{"title":"On Parametric and Matrix Solutions to the Diophantine Equation <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <msup> <mrow> <mi>x</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi mathvariant=\"normal\">d</mi> <msup> <mrow> <mi>y</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>−</mo> <msup> <mrow> <mi>z</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>0</mn> </math> Where <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <mi>d</mi> </math> Is a …","authors":"James D. Shaw, James Guyker","doi":"10.1155/2023/1505337","DOIUrl":null,"url":null,"abstract":"The well‐known matrix‐generated tree structure for Pythagorean triplets is extended to the primitive solutions of the Diophantine equation <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"> <msup> <mrow> <mi>x</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi mathvariant=\"normal\">d</mi> <msup> <mrow> <mi>y</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>−</mo> <msup> <mrow> <mi>z</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>0</mn> </math> where <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"> <mi>d</mi> </math> is a positive square‐free integer. The proof is based on a parametrization of these solutions as well as on a dual version of the Fermat’s method of descent.","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/1505337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The well‐known matrix‐generated tree structure for Pythagorean triplets is extended to the primitive solutions of the Diophantine equation where is a positive square‐free integer. The proof is based on a parametrization of these solutions as well as on a dual version of the Fermat’s method of descent.
期刊介绍:
The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.