Marco Arndt, Martin Dazer, Wolfram Raither, Bernd Bertsche
{"title":"Gezielte Bestimmung relevanter Einflussparameter für die Zuverlässigkeitsmodellierung von Maschinenkomponenten durch heuristisches Screening","authors":"Marco Arndt, Martin Dazer, Wolfram Raither, Bernd Bertsche","doi":"10.1007/s10010-023-00711-5","DOIUrl":null,"url":null,"abstract":"Abstract For the investigation of influence of various parameters on properties and outputs of components or systems, Design of Experiments (DOE) offers the most efficient approach to create a comprehensive empirical insight into product performance. However, especially if product lifetime is treated as the investigation objective, the main focus of attention must be placed on the efficiency of testing—if only to comply with the principle of DOE, even before testing begins. Without actual test runs, a pre-selection of relevant factors influencing the target quantity can be performed here and strategically adjusted in scale compared to the subsequent method. In this work, common heuristic tools and methods are analyzed and evaluated with respect to a deliberate preselection of influencing factors versus the challenges in lifetime testing and degradation behaviors. Several factors as well as their interactions are taken into account to achieve this. For this purpose, these methods are partially extended and adapted in their focus in order to finally be made applicable in a suitable procedure. An illustration of this is also provided in a selected use case with limited empirical and experimental prior-knowledge, in which a sample of relevant influences is identified through qualitative heuristic decision making with respect to parameters that influence product lifetime.","PeriodicalId":50431,"journal":{"name":"Forschung Im Ingenieurwesen-Engineering Research","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forschung Im Ingenieurwesen-Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10010-023-00711-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract For the investigation of influence of various parameters on properties and outputs of components or systems, Design of Experiments (DOE) offers the most efficient approach to create a comprehensive empirical insight into product performance. However, especially if product lifetime is treated as the investigation objective, the main focus of attention must be placed on the efficiency of testing—if only to comply with the principle of DOE, even before testing begins. Without actual test runs, a pre-selection of relevant factors influencing the target quantity can be performed here and strategically adjusted in scale compared to the subsequent method. In this work, common heuristic tools and methods are analyzed and evaluated with respect to a deliberate preselection of influencing factors versus the challenges in lifetime testing and degradation behaviors. Several factors as well as their interactions are taken into account to achieve this. For this purpose, these methods are partially extended and adapted in their focus in order to finally be made applicable in a suitable procedure. An illustration of this is also provided in a selected use case with limited empirical and experimental prior-knowledge, in which a sample of relevant influences is identified through qualitative heuristic decision making with respect to parameters that influence product lifetime.
期刊介绍:
This journal is aimed at those who require an interdisciplinary overview of current research in fundamental areas of engineering science as well as outstanding contributions in their own field. It intends to encourage an exchange of ideas between the areas of research and development. Submissions are subject to regular peer review by independent experts. Mainly contributions in German from all disciplines of engineering and technology will be considered for evaluation and publication.