A Study on Lacunary Strong Convergence according to Modulus Functions

IF 0.3 4区 综合性期刊 Q4 MULTIDISCIPLINARY SCIENCES
Mustafa Hatim, Çiğdem Bektaş
{"title":"A Study on Lacunary Strong Convergence according to Modulus Functions","authors":"Mustafa Hatim, Çiğdem Bektaş","doi":"10.7546/crabs.2023.10.01","DOIUrl":null,"url":null,"abstract":"In this article, we study a new generalization of the lacunary strongly convergent sequences and introduce the concept of lacunary strong convergence according to $$g^k$$ for sequences of complex (or real) numbers, where $$g^k=g\\circ g\\circ\\dots\\circ g$$ ($$k$$ times) represents a composite modulus function. After that, we determine the connections of lacunary strong convergence and lacunary statistical convergence to lacunary strong convergence according to $$g^k$$. Furthermore, we investigate several properties of this generalization.","PeriodicalId":50652,"journal":{"name":"Comptes Rendus De L Academie Bulgare Des Sciences","volume":"341 ","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus De L Academie Bulgare Des Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/crabs.2023.10.01","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study a new generalization of the lacunary strongly convergent sequences and introduce the concept of lacunary strong convergence according to $$g^k$$ for sequences of complex (or real) numbers, where $$g^k=g\circ g\circ\dots\circ g$$ ($$k$$ times) represents a composite modulus function. After that, we determine the connections of lacunary strong convergence and lacunary statistical convergence to lacunary strong convergence according to $$g^k$$. Furthermore, we investigate several properties of this generalization.
基于模函数的空间强收敛性研究
本文研究了复(或实数)数列的一个新的推广,并根据$$g^k$$引入了复(或实数)数列的缺强收敛的概念,其中$$g^k=g\circ g\circ\dots\circ g$$ ($$k$$次)表示复合模函数。之后,我们根据$$g^k$$确定了缺域强收敛和缺域统计收敛与缺域强收敛的联系。进一步,我们研究了这一推广的几个性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Comptes Rendus De L Academie Bulgare Des Sciences
Comptes Rendus De L Academie Bulgare Des Sciences 综合性期刊-综合性期刊
CiteScore
0.60
自引率
33.30%
发文量
181
审稿时长
3-6 weeks
期刊介绍: Founded in 1948 by academician Georgy Nadjakov, "Comptes rendus de l’Académie bulgare des Sciences" is also known as "Доклади на БАН","Доклады Болгарской академии наук" and "Proceeding of the Bulgarian Academy of Sciences". If applicable, the name of the journal should be abbreviated as follows: C. R. Acad. Bulg. Sci. (according to ISO)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信