Sean Ulm, Damien O’Grady, Fiona Petchey, Quan Hua, Geraldine Jacobsen, Lauren Linnenlucke, Bruno David, Daniel Rosendahl, Magdalena M E Bunbury, Michael I Bird, Paula J Reimer
{"title":"AUSTRALIAN MARINE RADIOCARBON RESERVOIR EFFECTS: ΔR ATLAS AND ΔR CALCULATOR FOR AUSTRALIAN MAINLAND COASTS AND NEAR-SHORE ISLANDS","authors":"Sean Ulm, Damien O’Grady, Fiona Petchey, Quan Hua, Geraldine Jacobsen, Lauren Linnenlucke, Bruno David, Daniel Rosendahl, Magdalena M E Bunbury, Michael I Bird, Paula J Reimer","doi":"10.1017/rdc.2023.95","DOIUrl":null,"url":null,"abstract":"ABSTRACT Studies of pre-bomb mollusks live-collected around the Australian coastline have concluded that near-shore marine radiocarbon reservoir effects are small and relatively uniform. These studies are based on limited samples of sometimes dubious quality representing only selective parts of Australia’s lengthy coastline. We systematically examine spatial variability in the marine radiocarbon reservoir effect (ΔR) through analysis of 292 live-collected mollusk samples across the Australian mainland coasts and near-shore islands subject to strict selection criteria. This study presents 233 new ΔR values combined with an evaluation of 59 previously published values. Results demonstrate significant spatial variability in marine radiocarbon reservoir effects across the study region. ΔR values range from 68 ± 24 14 C years off the Pilbara region of Western Australia to –337 ± 46 14 C years in the southern Gulf of Carpentaria in Queensland. Most sets of local values exhibit internal consistency, reflecting the dominant influence of regional oceanography, including depletion in ΔR values southwards along the eastern Australian coastline coincident with the East Australian Current. Anomalous values are attributed to inaccurate documentation, species-specific relationships with the carbon cycle and/or short-term fluctuations in marine radiocarbon activities. To account for the heterogeneous distribution of marine 14 C, we recommend using a location specific ΔR value calculated using the Australian ΔR Calculator, available at: https://delta-r-calc.jcu.io/ .","PeriodicalId":21020,"journal":{"name":"Radiocarbon","volume":"216 2","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiocarbon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/rdc.2023.95","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Studies of pre-bomb mollusks live-collected around the Australian coastline have concluded that near-shore marine radiocarbon reservoir effects are small and relatively uniform. These studies are based on limited samples of sometimes dubious quality representing only selective parts of Australia’s lengthy coastline. We systematically examine spatial variability in the marine radiocarbon reservoir effect (ΔR) through analysis of 292 live-collected mollusk samples across the Australian mainland coasts and near-shore islands subject to strict selection criteria. This study presents 233 new ΔR values combined with an evaluation of 59 previously published values. Results demonstrate significant spatial variability in marine radiocarbon reservoir effects across the study region. ΔR values range from 68 ± 24 14 C years off the Pilbara region of Western Australia to –337 ± 46 14 C years in the southern Gulf of Carpentaria in Queensland. Most sets of local values exhibit internal consistency, reflecting the dominant influence of regional oceanography, including depletion in ΔR values southwards along the eastern Australian coastline coincident with the East Australian Current. Anomalous values are attributed to inaccurate documentation, species-specific relationships with the carbon cycle and/or short-term fluctuations in marine radiocarbon activities. To account for the heterogeneous distribution of marine 14 C, we recommend using a location specific ΔR value calculated using the Australian ΔR Calculator, available at: https://delta-r-calc.jcu.io/ .
期刊介绍:
Radiocarbon serves as the leading international journal for technical and interpretive articles, date lists, and advancements in 14C and other radioisotopes relevant to archaeological, geophysical, oceanographic, and related dating methods. Established in 1959, it has published numerous seminal works and hosts the triennial International Radiocarbon Conference proceedings. The journal also features occasional special issues. Submissions encompass regular articles such as research reports, technical descriptions, and date lists, along with comments, letters to the editor, book reviews, and laboratory lists.