Convergence analysis of the Halpern iteration with adaptive anchoring parameters

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Songnian He, Hong-Kun Xu, Qiao-Li Dong, Na Mei
{"title":"Convergence analysis of the Halpern iteration with adaptive anchoring parameters","authors":"Songnian He, Hong-Kun Xu, Qiao-Li Dong, Na Mei","doi":"10.1090/mcom/3851","DOIUrl":null,"url":null,"abstract":"We propose an adaptive way to choose the anchoring parameters for the Halpern iteration to find a fixed point of a nonexpansive mapping in a real Hilbert space. We prove strong convergence of this adaptive Halpern iteration and obtain the rate of asymptotic regularity at least <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis 1 slash k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(1/k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the number of iterations. Numerical experiments are also provided to show advantages and outperformance of our adaptive Halpern algorithm over the standard Halpern algorithm.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"30 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3851","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an adaptive way to choose the anchoring parameters for the Halpern iteration to find a fixed point of a nonexpansive mapping in a real Hilbert space. We prove strong convergence of this adaptive Halpern iteration and obtain the rate of asymptotic regularity at least O ( 1 / k ) O(1/k) , where k k is the number of iterations. Numerical experiments are also provided to show advantages and outperformance of our adaptive Halpern algorithm over the standard Halpern algorithm.
自适应锚定参数下Halpern迭代的收敛性分析
提出了一种自适应选择锚定参数的方法,用于在实数Hilbert空间中寻找非扩张映射的不动点。证明了该自适应Halpern迭代的强收敛性,得到了渐近正则性速率至少为O(1/k) O(1/k),其中k k为迭代次数。数值实验显示了自适应Halpern算法相对于标准Halpern算法的优点和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信