Hao Zhang, Lorenzo Sironi, Dimitrios Giannios, Maria Petropoulou
{"title":"The Origin of Power-law Spectra in Relativistic Magnetic Reconnection","authors":"Hao Zhang, Lorenzo Sironi, Dimitrios Giannios, Maria Petropoulou","doi":"10.3847/2041-8213/acfe7c","DOIUrl":null,"url":null,"abstract":"Abstract Magnetic reconnection is often invoked as a source of high-energy particles, and in relativistic astrophysical systems it is regarded as a prime candidate for powering fast and bright flares. We present a novel analytical model—supported and benchmarked with large-scale three-dimensional kinetic particle-in-cell simulations in electron–positron plasmas—that elucidates the physics governing the generation of power-law energy spectra in relativistic reconnection. Particles with Lorentz factor γ ≳ 3 σ (here, σ is the magnetization) gain most of their energy in the inflow region, while meandering between the two sides of the reconnection layer. Their acceleration time is <?CDATA ${t}_{\\mathrm{acc}}\\sim \\gamma \\,{\\eta }_{\\mathrm{rec}}^{-1}{\\omega }_{{\\rm{c}}}^{-1}\\simeq 20\\,\\gamma \\,{\\omega }_{{\\rm{c}}}^{-1}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>acc</mml:mi> </mml:mrow> </mml:msub> <mml:mo>∼</mml:mo> <mml:mi>γ</mml:mi> <mml:mspace width=\"0.25em\" /> <mml:msubsup> <mml:mrow> <mml:mi>η</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>rec</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mrow> <mml:mi>ω</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">c</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>≃</mml:mo> <mml:mn>20</mml:mn> <mml:mspace width=\"0.25em\" /> <mml:mi>γ</mml:mi> <mml:mspace width=\"0.25em\" /> <mml:msubsup> <mml:mrow> <mml:mi>ω</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">c</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , where η rec ≃ 0.06 is the inflow speed in units of the speed of light and ω c = eB 0 / mc is the gyrofrequency in the upstream magnetic field. They leave the region of active energization after t esc , when they get captured by one of the outflowing flux ropes of reconnected plasma. We directly measure t esc in our simulations and find that t esc ∼ t acc for σ ≳ few. This leads to a universal (i.e., σ -independent) power-law spectrum <?CDATA ${{dN}}_{\\mathrm{free}}/d\\gamma \\propto {\\gamma }^{-1}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"italic\">dN</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>free</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo stretchy=\"true\">/</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> <mml:mi>γ</mml:mi> <mml:mo>∝</mml:mo> <mml:msup> <mml:mrow> <mml:mi>γ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> for the particles undergoing active acceleration, and <?CDATA ${dN}/d\\gamma \\propto {\\gamma }^{-2}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi mathvariant=\"italic\">dN</mml:mi> <mml:mrow> <mml:mo stretchy=\"true\">/</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> <mml:mi>γ</mml:mi> <mml:mo>∝</mml:mo> <mml:msup> <mml:mrow> <mml:mi>γ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:math> for the overall particle population. Our results help to shed light on the ubiquitous presence of power-law particle and photon spectra in astrophysical nonthermal sources.","PeriodicalId":55567,"journal":{"name":"Astrophysical Journal Letters","volume":"6 1","pages":"0"},"PeriodicalIF":8.8000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/acfe7c","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Magnetic reconnection is often invoked as a source of high-energy particles, and in relativistic astrophysical systems it is regarded as a prime candidate for powering fast and bright flares. We present a novel analytical model—supported and benchmarked with large-scale three-dimensional kinetic particle-in-cell simulations in electron–positron plasmas—that elucidates the physics governing the generation of power-law energy spectra in relativistic reconnection. Particles with Lorentz factor γ ≳ 3 σ (here, σ is the magnetization) gain most of their energy in the inflow region, while meandering between the two sides of the reconnection layer. Their acceleration time is tacc∼γηrec−1ωc−1≃20γωc−1 , where η rec ≃ 0.06 is the inflow speed in units of the speed of light and ω c = eB 0 / mc is the gyrofrequency in the upstream magnetic field. They leave the region of active energization after t esc , when they get captured by one of the outflowing flux ropes of reconnected plasma. We directly measure t esc in our simulations and find that t esc ∼ t acc for σ ≳ few. This leads to a universal (i.e., σ -independent) power-law spectrum dNfree/dγ∝γ−1 for the particles undergoing active acceleration, and dN/dγ∝γ−2 for the overall particle population. Our results help to shed light on the ubiquitous presence of power-law particle and photon spectra in astrophysical nonthermal sources.
期刊介绍:
The Astrophysical Journal Letters (ApJL) is widely regarded as the foremost journal for swiftly disseminating groundbreaking astronomical research. It focuses on concise reports that highlight pivotal advancements in the field of astrophysics. By prioritizing timeliness and the generation of immediate interest among researchers, ApJL showcases articles featuring novel discoveries and critical findings that have a profound effect on the scientific community. Moreover, ApJL ensures that published articles are comprehensive in their scope, presenting context that can be readily comprehensible to scientists who may not possess expertise in the specific disciplines covered.