{"title":"Mapping spatiotemporal soil moisture in highly heterogeneous agricultural landscapes using mobile dual‐spectra cosmic‐ray neutron sensing","authors":"Mie Andreasen, Søren Julsgaard Kragh, Rena Meyer, Karsten Høgh Jensen, Majken C. Looms","doi":"10.1002/vzj2.20287","DOIUrl":null,"url":null,"abstract":"Abstract Accurate large‐scale soil moisture (SM) maps are crucial for catchment‐scale hydrological models used for water resource management and warning systems for droughts, floods, and wildfires. SM can be mapped by mobile cosmic‐ray neutron (CRN) systems of moderated detectors at homogeneous landscapes of similar soil and vegetation. In this study, we present a new approach for mobile CRN detection to perform to its full potential, where CRN measurements can also be converted to SM at heterogeneous landscapes. The approach is based solely on thermal and epithermal neutron datasets obtained from mobile dual‐spectra CRN detection, combined with theoretical developments using a particle transport model. For each measurement point, the land cover type is identified using the thermal‐to‐epithermal (T/E) ratio, and the relevant neutron‐count‐to‐soil‐moisture conversion function is estimated from CRN stations located at the main land cover types in the catchment. With this approach, the requirement of collecting 100+ soil samples for each point along the survey route is omitted. We use this T/E‐dependent approach to obtain SM maps from 12 CRN surveys and compare it with a simple approach where only the conversion function from the agricultural site is used. SM by the simple approach is comparable to the estimates of the agricultural stations of a capacitance sensor network, while the estimates of the T/E‐dependent approach also compare well with the heathland and forest stations. With accurate SM estimates for all landcover types, the average error is reduced from 0.089 to 0.038 when comparing CRN SM with space‐borne Soil Moisture Active Passive Mission estimates.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"68 12","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/vzj2.20287","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Accurate large‐scale soil moisture (SM) maps are crucial for catchment‐scale hydrological models used for water resource management and warning systems for droughts, floods, and wildfires. SM can be mapped by mobile cosmic‐ray neutron (CRN) systems of moderated detectors at homogeneous landscapes of similar soil and vegetation. In this study, we present a new approach for mobile CRN detection to perform to its full potential, where CRN measurements can also be converted to SM at heterogeneous landscapes. The approach is based solely on thermal and epithermal neutron datasets obtained from mobile dual‐spectra CRN detection, combined with theoretical developments using a particle transport model. For each measurement point, the land cover type is identified using the thermal‐to‐epithermal (T/E) ratio, and the relevant neutron‐count‐to‐soil‐moisture conversion function is estimated from CRN stations located at the main land cover types in the catchment. With this approach, the requirement of collecting 100+ soil samples for each point along the survey route is omitted. We use this T/E‐dependent approach to obtain SM maps from 12 CRN surveys and compare it with a simple approach where only the conversion function from the agricultural site is used. SM by the simple approach is comparable to the estimates of the agricultural stations of a capacitance sensor network, while the estimates of the T/E‐dependent approach also compare well with the heathland and forest stations. With accurate SM estimates for all landcover types, the average error is reduced from 0.089 to 0.038 when comparing CRN SM with space‐borne Soil Moisture Active Passive Mission estimates.
期刊介绍:
Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.