New Partially Linear Regression and Machine Learning Models Applied to Agronomic Data

IF 1.9 3区 数学 Q1 MATHEMATICS, APPLIED
Axioms Pub Date : 2023-10-31 DOI:10.3390/axioms12111027
Gabriela M. Rodrigues, Edwin M. M. Ortega, Gauss M. Cordeiro
{"title":"New Partially Linear Regression and Machine Learning Models Applied to Agronomic Data","authors":"Gabriela M. Rodrigues, Edwin M. M. Ortega, Gauss M. Cordeiro","doi":"10.3390/axioms12111027","DOIUrl":null,"url":null,"abstract":"Regression analysis can be appropriate to describe a nonlinear relationship between the response variable and the explanatory variables. This article describes the construction of a partially linear regression model with two systematic components based on the exponentiated odd log-logistic normal distribution. The parameters are estimated by the penalized maximum likelihood method. Simulations for some parameter settings and sample sizes empirically prove the accuracy of the estimators. The superiority of the proposed regression model over other regression models is shown by means of agronomic experimentation data. The predictive performance of the new model is compared with two machine learning techniques: decision trees and random forests. These methods achieved similar prediction performance, i.e., none stands out as a better predictor. In this sense, the objective of the research is to choose the best method. If the objective is only predictive, the decision tree can be used due to its simplicity. For inference purposes, the regression model is recommended, which can provide much more information regarding the relationship of the variables under study.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"92 3","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms12111027","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Regression analysis can be appropriate to describe a nonlinear relationship between the response variable and the explanatory variables. This article describes the construction of a partially linear regression model with two systematic components based on the exponentiated odd log-logistic normal distribution. The parameters are estimated by the penalized maximum likelihood method. Simulations for some parameter settings and sample sizes empirically prove the accuracy of the estimators. The superiority of the proposed regression model over other regression models is shown by means of agronomic experimentation data. The predictive performance of the new model is compared with two machine learning techniques: decision trees and random forests. These methods achieved similar prediction performance, i.e., none stands out as a better predictor. In this sense, the objective of the research is to choose the best method. If the objective is only predictive, the decision tree can be used due to its simplicity. For inference purposes, the regression model is recommended, which can provide much more information regarding the relationship of the variables under study.
新的部分线性回归和机器学习模型在农艺数据中的应用
回归分析可以适当地描述响应变量和解释变量之间的非线性关系。本文描述了基于指数奇对数-逻辑正态分布的双系统分量部分线性回归模型的构造。采用惩罚极大似然法对参数进行估计。对一些参数设置和样本大小的模拟经验证明了估计器的准确性。通过农艺试验数据证明了该回归模型相对于其他回归模型的优越性。新模型的预测性能与两种机器学习技术:决策树和随机森林进行了比较。这些方法实现了相似的预测性能,也就是说,没有一个是更好的预测器。从这个意义上说,研究的目的是选择最好的方法。如果目标只是预测性的,则可以使用决策树,因为它很简单。出于推理的目的,推荐使用回归模型,它可以提供更多关于所研究变量之间关系的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Axioms
Axioms Mathematics-Algebra and Number Theory
自引率
10.00%
发文量
604
审稿时长
11 weeks
期刊介绍: Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信