Sharp Threshold of Global Existence and Mass Concentration for the Schrödinger–Hartree Equation with Anisotropic Harmonic Confinement

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Min Gong, Hui Jian
{"title":"Sharp Threshold of Global Existence and Mass Concentration for the Schrödinger–Hartree Equation with Anisotropic Harmonic Confinement","authors":"Min Gong, Hui Jian","doi":"10.1155/2023/4316819","DOIUrl":null,"url":null,"abstract":"This article is concerned with the initial-value problem of a Schrödinger–Hartree equation in the presence of anisotropic partial/whole harmonic confinement. First, we get a sharp threshold for global existence and finite time blow-up on the ground state mass in the <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <msup> <mi>L</mi> <mn>2</mn> </msup> </math> -critical case. Then, some new cross-invariant manifolds and variational problems are constructed to study blow-up versus global well-posedness criterion in the <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <msup> <mi>L</mi> <mn>2</mn> </msup> </math> -critical and <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"> <msup> <mi>L</mi> <mn>2</mn> </msup> </math> -supercritical cases. Finally, we research the mass concentration phenomenon of blow-up solutions and the dynamics of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"> <msup> <mi>L</mi> <mn>2</mn> </msup> </math> -minimal blow-up solutions in the <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\"> <msup> <mi>L</mi> <mn>2</mn> </msup> </math> -critical case. The main ingredients of the proofs are the variational characterisation of the ground state, a suitably refined compactness lemma, and scaling techniques. Our conclusions extend and compensate for some previous results.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4316819","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This article is concerned with the initial-value problem of a Schrödinger–Hartree equation in the presence of anisotropic partial/whole harmonic confinement. First, we get a sharp threshold for global existence and finite time blow-up on the ground state mass in the L 2 -critical case. Then, some new cross-invariant manifolds and variational problems are constructed to study blow-up versus global well-posedness criterion in the L 2 -critical and L 2 -supercritical cases. Finally, we research the mass concentration phenomenon of blow-up solutions and the dynamics of the L 2 -minimal blow-up solutions in the L 2 -critical case. The main ingredients of the proofs are the variational characterisation of the ground state, a suitably refined compactness lemma, and scaling techniques. Our conclusions extend and compensate for some previous results.
具有各向异性谐波约束的Schrödinger-Hartree方程的全局存在性和质量浓度的尖锐阈值
研究了各向异性部分/整体谐波约束下Schrödinger-Hartree方程的初值问题。首先,在l2临界情况下,我们得到了一个全局存在和有限时间爆炸的尖锐阈值。然后,构造了一些新的交叉不变流形和变分问题,研究了l2 -临界和l2 -超临界情况下的抗全局适定性判据。最后,我们研究了爆破溶液的质量浓度现象和临界情况下最小爆破溶液的动力学。这些证明的主要成分是基态的变分特征、适当精炼的紧致引理和标度技术。我们的结论扩展并弥补了以前的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematical Physics
Advances in Mathematical Physics 数学-应用数学
CiteScore
2.40
自引率
8.30%
发文量
151
审稿时长
>12 weeks
期刊介绍: Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike. As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信