{"title":"Sharp Threshold of Global Existence and Mass Concentration for the Schrödinger–Hartree Equation with Anisotropic Harmonic Confinement","authors":"Min Gong, Hui Jian","doi":"10.1155/2023/4316819","DOIUrl":null,"url":null,"abstract":"This article is concerned with the initial-value problem of a Schrödinger–Hartree equation in the presence of anisotropic partial/whole harmonic confinement. First, we get a sharp threshold for global existence and finite time blow-up on the ground state mass in the <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <msup> <mi>L</mi> <mn>2</mn> </msup> </math> -critical case. Then, some new cross-invariant manifolds and variational problems are constructed to study blow-up versus global well-posedness criterion in the <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <msup> <mi>L</mi> <mn>2</mn> </msup> </math> -critical and <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"> <msup> <mi>L</mi> <mn>2</mn> </msup> </math> -supercritical cases. Finally, we research the mass concentration phenomenon of blow-up solutions and the dynamics of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"> <msup> <mi>L</mi> <mn>2</mn> </msup> </math> -minimal blow-up solutions in the <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\"> <msup> <mi>L</mi> <mn>2</mn> </msup> </math> -critical case. The main ingredients of the proofs are the variational characterisation of the ground state, a suitably refined compactness lemma, and scaling techniques. Our conclusions extend and compensate for some previous results.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":"21 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4316819","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article is concerned with the initial-value problem of a Schrödinger–Hartree equation in the presence of anisotropic partial/whole harmonic confinement. First, we get a sharp threshold for global existence and finite time blow-up on the ground state mass in the -critical case. Then, some new cross-invariant manifolds and variational problems are constructed to study blow-up versus global well-posedness criterion in the -critical and -supercritical cases. Finally, we research the mass concentration phenomenon of blow-up solutions and the dynamics of the -minimal blow-up solutions in the -critical case. The main ingredients of the proofs are the variational characterisation of the ground state, a suitably refined compactness lemma, and scaling techniques. Our conclusions extend and compensate for some previous results.
期刊介绍:
Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike.
As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.