Danica Basarić, Mária Lukáčova-Medvidova, Hana Mizerová, Bangwei She, Yuhuan Yuan
{"title":"Error estimates of a finite volume method for the compressible Navier–Stokes–Fourier system","authors":"Danica Basarić, Mária Lukáčova-Medvidova, Hana Mizerová, Bangwei She, Yuhuan Yuan","doi":"10.1090/mcom/3852","DOIUrl":null,"url":null,"abstract":"In this paper we study the convergence rate of a finite volume approximation of the compressible Navier–Stokes–Fourier system. To this end we first show the local existence of a regular unique strong solution and analyse its global extension in time as far as the density and temperature remain bounded. We make a physically reasonable assumption that the numerical density and temperature are uniformly bounded from above and below. The relative energy provides us an elegant way to derive a priori error estimates between finite volume solutions and the strong solution.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we study the convergence rate of a finite volume approximation of the compressible Navier–Stokes–Fourier system. To this end we first show the local existence of a regular unique strong solution and analyse its global extension in time as far as the density and temperature remain bounded. We make a physically reasonable assumption that the numerical density and temperature are uniformly bounded from above and below. The relative energy provides us an elegant way to derive a priori error estimates between finite volume solutions and the strong solution.