Subgroup Membership in GL(2,Z)

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Markus Lohrey
{"title":"Subgroup Membership in GL(2,Z)","authors":"Markus Lohrey","doi":"10.1007/s00224-023-10122-2","DOIUrl":null,"url":null,"abstract":"Abstract It is shown that the subgroup membership problem for a virtually free group can be decided in polynomial time when all group elements are represented by so-called power words, i.e., words of the form $$p_1^{z_1} p_2^{z_2} \\cdots p_k^{z_k}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msubsup> <mml:mi>p</mml:mi> <mml:mn>1</mml:mn> <mml:msub> <mml:mi>z</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:msubsup> <mml:msubsup> <mml:mi>p</mml:mi> <mml:mn>2</mml:mn> <mml:msub> <mml:mi>z</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:msubsup> <mml:mo>⋯</mml:mo> <mml:msubsup> <mml:mi>p</mml:mi> <mml:mi>k</mml:mi> <mml:msub> <mml:mi>z</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:msubsup> </mml:mrow> </mml:math> . Here the $$p_i$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:math> are explicit words over the generating set of the group and all $$z_i$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>z</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:math> are binary encoded integers. As a corollary, it follows that the subgroup membership problem for the matrix group $$\\textsf{GL}(2,\\mathbb {Z})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>GL</mml:mi> <mml:mo>(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>Z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> can be decided in polynomial time when elements of $$\\textsf{GL}(2,\\mathbb {Z})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>GL</mml:mi> <mml:mo>(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>Z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> are represented by matrices with binary encoded integers. For the same input representation, it also shown that one can compute in polynomial time the index of a given finitely generated subgroup of $$\\textsf{GL}(2,\\mathbb {Z})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>GL</mml:mi> <mml:mo>(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>Z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> .","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00224-023-10122-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract It is shown that the subgroup membership problem for a virtually free group can be decided in polynomial time when all group elements are represented by so-called power words, i.e., words of the form $$p_1^{z_1} p_2^{z_2} \cdots p_k^{z_k}$$ p 1 z 1 p 2 z 2 p k z k . Here the $$p_i$$ p i are explicit words over the generating set of the group and all $$z_i$$ z i are binary encoded integers. As a corollary, it follows that the subgroup membership problem for the matrix group $$\textsf{GL}(2,\mathbb {Z})$$ GL ( 2 , Z ) can be decided in polynomial time when elements of $$\textsf{GL}(2,\mathbb {Z})$$ GL ( 2 , Z ) are represented by matrices with binary encoded integers. For the same input representation, it also shown that one can compute in polynomial time the index of a given finitely generated subgroup of $$\textsf{GL}(2,\mathbb {Z})$$ GL ( 2 , Z ) .

Abstract Image

GL(2,Z)中的子群隶属
摘要证明了一个几乎自由群的子群隶属问题可以在多项式时间内决定,当所有群元素都由所谓的幂词表示时,即$$p_1^{z_1} p_2^{z_2} \cdots p_k^{z_k}$$ p 1 z 1 p 2 z 2⋯p k z k。这里的$$p_i$$ pi是组的生成集上的显式单词,所有的$$z_i$$ zi都是二进制编码的整数。作为推论,当$$\textsf{GL}(2,\mathbb {Z})$$ GL (2, Z)的元素用二进制编码的整数矩阵表示时,矩阵群$$\textsf{GL}(2,\mathbb {Z})$$ GL (2, Z)的子群隶属性问题可以在多项式时间内确定。对于相同的输入表示,它还表明可以在多项式时间内计算给定的有限生成的子群$$\textsf{GL}(2,\mathbb {Z})$$ GL (2, Z)的索引。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory of Computing Systems
Theory of Computing Systems 工程技术-计算机:理论方法
CiteScore
1.90
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: TOCS is devoted to publishing original research from all areas of theoretical computer science, ranging from foundational areas such as computational complexity, to fundamental areas such as algorithms and data structures, to focused areas such as parallel and distributed algorithms and architectures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信