t-Structures with Grothendieck hearts via functor categories

IF 1.2 2区 数学 Q1 MATHEMATICS
Manuel Saorín, Jan Šťovíček
{"title":"t-Structures with Grothendieck hearts via functor categories","authors":"Manuel Saorín, Jan Šťovíček","doi":"10.1007/s00029-023-00872-9","DOIUrl":null,"url":null,"abstract":"Abstract We study when the heart of a t -structure in a triangulated category $$\\mathcal {D}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>D</mml:mi> </mml:math> with coproducts is AB5 or a Grothendieck category. If $$\\mathcal {D}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>D</mml:mi> </mml:math> satisfies Brown representability, a t -structure has an AB5 heart with an injective cogenerator and coproduct-preserving associated homological functor if, and only if, the coaisle has a pure-injective t -cogenerating object. If $$\\mathcal {D}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>D</mml:mi> </mml:math> is standard well generated, such a heart is automatically a Grothendieck category. For compactly generated t -structures (in any ambient triangulated category with coproducts), we prove that the heart is a locally finitely presented Grothendieck category. We use functor categories and the proofs rely on two main ingredients. Firstly, we express the heart of any t -structure in any triangulated category as a Serre quotient of the category of finitely presented additive functors for suitable choices of subcategories of the aisle or the co-aisle that we, respectively, call t -generating or t -cogenerating subcategories. Secondly, we study coproduct-preserving homological functors from $$\\mathcal {D}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>D</mml:mi> </mml:math> to complete AB5 abelian categories with injective cogenerators and classify them, up to a so-called computational equivalence, in terms of pure-injective objects in $$\\mathcal {D}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>D</mml:mi> </mml:math> . This allows us to show that any standard well generated triangulated category $$\\mathcal {D}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>D</mml:mi> </mml:math> possesses a universal such coproduct-preserving homological functor, to develop a purity theory and to prove that pure-injective objects always cogenerate t -structures in such triangulated categories.","PeriodicalId":49551,"journal":{"name":"Selecta Mathematica-New Series","volume":"36 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica-New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00872-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 21

Abstract

Abstract We study when the heart of a t -structure in a triangulated category $$\mathcal {D}$$ D with coproducts is AB5 or a Grothendieck category. If $$\mathcal {D}$$ D satisfies Brown representability, a t -structure has an AB5 heart with an injective cogenerator and coproduct-preserving associated homological functor if, and only if, the coaisle has a pure-injective t -cogenerating object. If $$\mathcal {D}$$ D is standard well generated, such a heart is automatically a Grothendieck category. For compactly generated t -structures (in any ambient triangulated category with coproducts), we prove that the heart is a locally finitely presented Grothendieck category. We use functor categories and the proofs rely on two main ingredients. Firstly, we express the heart of any t -structure in any triangulated category as a Serre quotient of the category of finitely presented additive functors for suitable choices of subcategories of the aisle or the co-aisle that we, respectively, call t -generating or t -cogenerating subcategories. Secondly, we study coproduct-preserving homological functors from $$\mathcal {D}$$ D to complete AB5 abelian categories with injective cogenerators and classify them, up to a so-called computational equivalence, in terms of pure-injective objects in $$\mathcal {D}$$ D . This allows us to show that any standard well generated triangulated category $$\mathcal {D}$$ D possesses a universal such coproduct-preserving homological functor, to develop a purity theory and to prove that pure-injective objects always cogenerate t -structures in such triangulated categories.
基于函子范畴的格罗滕迪克心的t结构
摘要研究了带副积的三角化范畴$$\mathcal {D}$$ D中的t型结构的中心是AB5还是Grothendieck范畴。如果$$\mathcal {D}$$ D满足Brown可表示性,则t-结构具有AB5心,且该AB5心具有内射余生子和保余积相关的同调函子,当且仅当该共通道具有纯内射的t-余生对象。如果$$\mathcal {D}$$ D是标准井生成的,那么这样的心脏自动属于格罗滕迪克类别。对于紧生成的t -结构(在任何有余积的环境三角化范畴中),证明了心是一个局部有限呈现的Grothendieck范畴。我们使用函子范畴,证明依赖于两个主要成分。首先,我们将任何三角化范畴中任何t -结构的中心表示为有限呈现的加性函子范畴的Serre商,以适当选择通道或共通道的子范畴,我们分别称之为t -生成子范畴或t -共生成子范畴。其次,我们研究了保持协积的同调函子在$$\mathcal {D}$$ D上完备AB5个具有内射协生的阿贝尔范畴,并根据$$\mathcal {D}$$ D中的纯内射对象对它们进行了分类,直到所谓的计算等价。这使得我们证明了任何标准的良好生成三角范畴$$\mathcal {D}$$ D都具有一个普适的保协积同调函子,从而建立了一个纯粹理论,并证明了在这种三角范畴中纯注入对象总是产生t-结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
68
审稿时长
>12 weeks
期刊介绍: Selecta Mathematica, New Series is a peer-reviewed journal addressed to a wide mathematical audience. It accepts well-written high quality papers in all areas of pure mathematics, and selected areas of applied mathematics. The journal especially encourages submission of papers which have the potential of opening new perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信