An active suspension system for enhancing running safety of high-speed trains under strong crosswind

IF 1.7 4区 工程技术 Q3 ENGINEERING, CIVIL
Heng Zhang, Liang Ling, Wanming Zhai, Kaiyun Wang
{"title":"An active suspension system for enhancing running safety of high-speed trains under strong crosswind","authors":"Heng Zhang, Liang Ling, Wanming Zhai, Kaiyun Wang","doi":"10.1177/09544097231206216","DOIUrl":null,"url":null,"abstract":"The running safety of trains subjected to strong crosswinds has become a major concern for the high-speed railways passing through complicated mountain areas. This paper reports an active secondary suspension system to improve the operation stability and running safety of high-speed trains under strong crosswind. The goal of the active suspension system is to regulate the lateral, yaw, and roll motion attitudes of high-speed train carbody, in which a controller is designed by combining with a disturbance observer and the sliding mode control method. To further verify the proposed active suspension strategy, a crosswind-vehicle-track coupled dynamics model is established, where the unsteady aerodynamic loads and random track irregularity excitations are considered. The results show that the proposed active suspension system has the efficient potential to regulate the carbody motion attitudes and enhance the anti-rolling performance of high-speed trains. In comparison to a quasi-static control strategy of active suspension, the use of the proposed active suspension system has led to a significant reduction in both wheel-load reduction ratios and derailment risks of high-speed trains.","PeriodicalId":54567,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544097231206216","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The running safety of trains subjected to strong crosswinds has become a major concern for the high-speed railways passing through complicated mountain areas. This paper reports an active secondary suspension system to improve the operation stability and running safety of high-speed trains under strong crosswind. The goal of the active suspension system is to regulate the lateral, yaw, and roll motion attitudes of high-speed train carbody, in which a controller is designed by combining with a disturbance observer and the sliding mode control method. To further verify the proposed active suspension strategy, a crosswind-vehicle-track coupled dynamics model is established, where the unsteady aerodynamic loads and random track irregularity excitations are considered. The results show that the proposed active suspension system has the efficient potential to regulate the carbody motion attitudes and enhance the anti-rolling performance of high-speed trains. In comparison to a quasi-static control strategy of active suspension, the use of the proposed active suspension system has led to a significant reduction in both wheel-load reduction ratios and derailment risks of high-speed trains.
一种提高高速列车在强侧风下运行安全性的主动悬架系统
高速铁路穿越复杂山区时,列车在强侧风作用下的运行安全已成为人们关注的主要问题。为提高高速列车在强侧风作用下的运行稳定性和运行安全性,提出了一种主动二次悬架系统。主动悬架系统的目标是对高速列车车体的横向、偏航和横摇运动姿态进行调节,其中结合扰动观测器和滑模控制方法设计了控制器。为了进一步验证所提出的主动悬架策略,建立了考虑非定常气动载荷和随机轨道不规则激励的横风车辆-轨道耦合动力学模型。结果表明,所提出的主动悬架系统在调节高速列车车体运动姿态和提高抗滚动性能方面具有有效的潜力。与主动悬架的准静态控制策略相比,所提出的主动悬架系统的使用显著降低了高速列车的车轮减载比和脱轨风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
10.00%
发文量
91
审稿时长
7 months
期刊介绍: The Journal of Rail and Rapid Transit is devoted to engineering in its widest interpretation applicable to rail and rapid transit. The Journal aims to promote sharing of technical knowledge, ideas and experience between engineers and researchers working in the railway field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信