{"title":"Edge-Computing-Based People-Counting System for Elevators Using MobileNet–Single-Stage Object Detection","authors":"Tsu-Chuan Shen, Edward T.-H. Chu","doi":"10.3390/fi15100337","DOIUrl":null,"url":null,"abstract":"Existing elevator systems lack the ability to display the number of people waiting on each floor and inside the elevator. This causes an inconvenience as users cannot tell if they should wait or seek alternatives, leading to unnecessary time wastage. In this work, we adopted edge computing by running the MobileNet–Single-Stage Object Detection (SSD) algorithm on edge devices to recognize the number of people inside an elevator and waiting on each floor. To ensure the accuracy of people counting, we fine-tuned the SSD parameters, such as the recognition frequency and confidence thresholds, and utilized the line of interest (LOI) counting strategy for people counting. In our experiment, we deployed four NVIDIA Jetson Nano boards in a four-floor building as edge devices to count people when they entered specific areas. The counting results, such as the number of people waiting on each floor and inside the elevator, were provided to users through a web app. Our experimental results demonstrate that the proposed method achieved an average accuracy of 85% for people counting. Furthermore, when comparing it to sending all images back to a remote server for people counting, the execution time required for edge computing was shorter, without compromising the accuracy significantly.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"68 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15100337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Existing elevator systems lack the ability to display the number of people waiting on each floor and inside the elevator. This causes an inconvenience as users cannot tell if they should wait or seek alternatives, leading to unnecessary time wastage. In this work, we adopted edge computing by running the MobileNet–Single-Stage Object Detection (SSD) algorithm on edge devices to recognize the number of people inside an elevator and waiting on each floor. To ensure the accuracy of people counting, we fine-tuned the SSD parameters, such as the recognition frequency and confidence thresholds, and utilized the line of interest (LOI) counting strategy for people counting. In our experiment, we deployed four NVIDIA Jetson Nano boards in a four-floor building as edge devices to count people when they entered specific areas. The counting results, such as the number of people waiting on each floor and inside the elevator, were provided to users through a web app. Our experimental results demonstrate that the proposed method achieved an average accuracy of 85% for people counting. Furthermore, when comparing it to sending all images back to a remote server for people counting, the execution time required for edge computing was shorter, without compromising the accuracy significantly.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.