Develop a Nonlinear Regression Model Using Box-Cox Transformation with Application

Rozheen Taher Awdi, Haithem Taha Mohammed Ali
{"title":"Develop a Nonlinear Regression Model Using Box-Cox Transformation with Application","authors":"Rozheen Taher Awdi, Haithem Taha Mohammed Ali","doi":"10.25007/ajnu.v12n4a1708","DOIUrl":null,"url":null,"abstract":"This article introduces an algorithm designed for utilizing power transformations in the estimation of nonlinear regression models. The algorithm outlines a series of steps for selecting the most suitable power parameter estimate through a combination of the conventional Maximum Likelihood Estimation technique and specific criteria for enhancing statistical modeling effectiveness. Supplementary decision guidelines involve the utilization of the determination coefficient and the p-value from the errors normality test. The algorithm's application was demonstrated using actual data. The article's conclusion highlighted the ability to identify a range of feasible solutions for selecting the optimal power parameter. However, it was acknowledging the challenge of identifying a single optimal value that satisfies the requirements of all estimation and decision methodologies.","PeriodicalId":303943,"journal":{"name":"Academic Journal of Nawroz University","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Nawroz University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25007/ajnu.v12n4a1708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces an algorithm designed for utilizing power transformations in the estimation of nonlinear regression models. The algorithm outlines a series of steps for selecting the most suitable power parameter estimate through a combination of the conventional Maximum Likelihood Estimation technique and specific criteria for enhancing statistical modeling effectiveness. Supplementary decision guidelines involve the utilization of the determination coefficient and the p-value from the errors normality test. The algorithm's application was demonstrated using actual data. The article's conclusion highlighted the ability to identify a range of feasible solutions for selecting the optimal power parameter. However, it was acknowledging the challenge of identifying a single optimal value that satisfies the requirements of all estimation and decision methodologies.
应用Box-Cox变换建立非线性回归模型
本文介绍了一种在非线性回归模型估计中利用功率变换的算法。该算法通过将传统的极大似然估计技术与提高统计建模有效性的特定标准相结合,概述了选择最合适的功率参数估计的一系列步骤。补充决策准则涉及决定系数和误差正态性检验的p值的利用。通过实际数据验证了该算法的应用。文章的结论强调了识别选择最佳功率参数的一系列可行解决方案的能力。然而,它承认了确定满足所有估计和决策方法要求的单一最优值的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信