Proposal and Evaluation of High-Heat Insulation System for Spacecraft by Using WPT

IF 1 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Sayuri Honda, Shuhei Shimada, Kosuke Tanaka, Kana Nakamura, Takehiro Imura, Katsuhiro Hata, Yoichi Hori
{"title":"Proposal and Evaluation of High-Heat Insulation System for Spacecraft by Using WPT","authors":"Sayuri Honda, Shuhei Shimada, Kosuke Tanaka, Kana Nakamura, Takehiro Imura, Katsuhiro Hata, Yoichi Hori","doi":"10.1541/ieejjia.22007943","DOIUrl":null,"url":null,"abstract":"As a new space station succeeding the International Space Station (ISS), a lunar orbit manned base, called “Gateway,” is considered and manned lunar surface exploration via the Gateway is also studied. To realize manned lunar surface exploration, new technologies are required to overcome the severe condition of the lunar night. As one of these technologies, applying wireless power transfer (WPT) to a spacecraft, such as a rover, is proposed. The WPT system contributes to the improvement of heat insulation performance and is ideal for reducing the weight of the battery of the spacecraft. In addition, magnetic transmissive multi-layer insulation (MT-MLI) is developed to suppress the generation of eddy currents. In WPT experiments with MT-MLI, the power transmission efficiency between coils is 90 % or more. Furthermore, thermal vacuum tests demonstrate that the combination of WPT and MT-MLI reduces thermal leakage.","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"4 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEJ Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.22007943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As a new space station succeeding the International Space Station (ISS), a lunar orbit manned base, called “Gateway,” is considered and manned lunar surface exploration via the Gateway is also studied. To realize manned lunar surface exploration, new technologies are required to overcome the severe condition of the lunar night. As one of these technologies, applying wireless power transfer (WPT) to a spacecraft, such as a rover, is proposed. The WPT system contributes to the improvement of heat insulation performance and is ideal for reducing the weight of the battery of the spacecraft. In addition, magnetic transmissive multi-layer insulation (MT-MLI) is developed to suppress the generation of eddy currents. In WPT experiments with MT-MLI, the power transmission efficiency between coils is 90 % or more. Furthermore, thermal vacuum tests demonstrate that the combination of WPT and MT-MLI reduces thermal leakage.
基于WPT的航天器高绝热系统的设计与评价
作为接替国际空间站(ISS)的新空间站,正在考虑建立月球轨道载人基地“门户”,并研究通过“门户”进行载人月球表面探测。要实现载人月面探测,需要克服月夜恶劣条件的新技术。作为这些技术之一,提出了将无线电力传输(WPT)应用于探测器等航天器。WPT系统有助于提高隔热性能,是减轻航天器电池重量的理想选择。此外,为了抑制涡流的产生,还开发了磁性传输多层绝缘(MT-MLI)。在MT-MLI的WPT实验中,线圈之间的功率传输效率达到90%以上。此外,热真空试验表明,WPT和MT-MLI的组合减少了热泄漏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEJ Journal of Industry Applications
IEEJ Journal of Industry Applications ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.80
自引率
17.60%
发文量
71
期刊介绍: IEEJ Journal of Industry Applications: Power Electronics - AC/AC Conversion and DC/DC Conversion, - Power Semiconductor Devices and their Application, - Inverters and Rectifiers, - Power Supply System and its Application, - Power Electronics Modeling, Simulation, Design and Control, - Renewable Electric Energy Conversion    Industrial System - Mechatronics and Robotics, - Industrial Instrumentation and Control, - Sensing, Actuation, Motion Control and Haptics, - Factory Automation and Production Facility Control, - Automobile Technology and ITS Technology, - Information Oriented Industrial System Electrical Machinery and Apparatus - Electric Machines Design, Modeling and Control, - Rotating Motor Drives and Linear Motor Drives, - Electric Vehicles and Hybrid Electric Vehicles, - Electric Railway and Traction Control, - Magnetic Levitation and Magnetic Bearing, - Static Apparatus and Superconductive Application Publishing Ethics of IEEJ Journal of Industry Applications:     Code of Ethics on IEEJ IEEJ Journal of Industry Applications is a peer-reviewed journal of IEEJ (the Institute of Electrical Engineers of Japan). The publication of IEEJ Journal of Industry Applications is an essential building article in the development of a coherent and respected network of knowledge. It is a direct reflection of the quality of the work of the authors and the institutions that support them. IEEJ Journal of Industry Applications has "Peer-reviewed articles support." It is therefore important to agree upon standards of expected ethical behavior for all parties involved in the act of publishing: the author, the journal editor, the peer reviewer and IEEJ (the Institute of Electrical Engineers of Japan).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信