Modulating miRNA binding sites within circRNA for enhanced translation efficiency

Q4 Engineering
Kewei Zhang, Ge Shan, Liang Chen
{"title":"Modulating miRNA binding sites within circRNA for enhanced translation efficiency","authors":"Kewei Zhang, Ge Shan, Liang Chen","doi":"10.52396/justc-2023-0048","DOIUrl":null,"url":null,"abstract":"Circular RNAs (circRNAs) are covalently closed circular RNAs, and some of them preserve translation potency. However, modulation of circRNA translation efficiency and its applications need to be explored. In this study, RNAs containing the translation initiation element CVB3 IRES and the coding sequence of luciferase protein were transcribed and circularized in vitro by T7 RNA polymerase and an optimized permutated intron‒exon (PIE) splicing strategy. The circularized RNAs were then transfected and translated into active luciferase in the cultured cells. Insertion of miRNA binding sites at the flanking region of the luciferase coding sequence significantly reduced the translation efficiency of the circRNAs. Mutations of the miRNA binding sites in the firefly luciferase coding sequence led to increased translation efficiency of synthetic circRNAs in cells. We also proved that mutations of the binding sites of specific miRNAs also enhanced the translation efficiency of synthetic circRNAs. Further in vivo experiments via bioluminescence imaging showed that synonymous mutation of the miRNA binding sites promoted synthetic circRNA translation in nude mice. This study demonstrates that the modulation of miRNA binding sites affects the translation efficiency of synthetic circRNAs in vitro and in vivo, which could be used as versatile tools for future applications in clinical imaging.","PeriodicalId":17548,"journal":{"name":"Journal of University of Science and Technology of China","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of University of Science and Technology of China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52396/justc-2023-0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Circular RNAs (circRNAs) are covalently closed circular RNAs, and some of them preserve translation potency. However, modulation of circRNA translation efficiency and its applications need to be explored. In this study, RNAs containing the translation initiation element CVB3 IRES and the coding sequence of luciferase protein were transcribed and circularized in vitro by T7 RNA polymerase and an optimized permutated intron‒exon (PIE) splicing strategy. The circularized RNAs were then transfected and translated into active luciferase in the cultured cells. Insertion of miRNA binding sites at the flanking region of the luciferase coding sequence significantly reduced the translation efficiency of the circRNAs. Mutations of the miRNA binding sites in the firefly luciferase coding sequence led to increased translation efficiency of synthetic circRNAs in cells. We also proved that mutations of the binding sites of specific miRNAs also enhanced the translation efficiency of synthetic circRNAs. Further in vivo experiments via bioluminescence imaging showed that synonymous mutation of the miRNA binding sites promoted synthetic circRNA translation in nude mice. This study demonstrates that the modulation of miRNA binding sites affects the translation efficiency of synthetic circRNAs in vitro and in vivo, which could be used as versatile tools for future applications in clinical imaging.
调节circRNA内的miRNA结合位点以提高翻译效率
环状rna (circRNAs)是共价封闭的环状rna,其中一些保留翻译效力。然而,circRNA翻译效率的调控及其应用还有待探索。本研究利用T7 RNA聚合酶和优化的排列内含子-外显子(PIE)剪接策略,对含有翻译起始元件CVB3 IRES和荧光素酶蛋白编码序列的RNA进行体外转录和环化。然后转染环状rna并在培养细胞中翻译成活性荧光素酶。在荧光素酶编码序列的侧翼区域插入miRNA结合位点显著降低了circrna的翻译效率。萤火虫荧光素酶编码序列中miRNA结合位点的突变导致细胞中合成环状rna的翻译效率提高。我们还证明了特定mirna结合位点的突变也提高了合成环状rna的翻译效率。通过生物发光成像的进一步体内实验表明,miRNA结合位点的同义突变促进了裸鼠合成circRNA的翻译。本研究表明,miRNA结合位点的调节影响了体外和体内合成circRNAs的翻译效率,这可以作为未来临床成像应用的多功能工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
5692
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信