{"title":"FOXD2-AS1 inhibits the proliferation and migration in prostate cancer: an in vitro and in vivo study","authors":"","doi":"10.22514/jomh.2023.092","DOIUrl":null,"url":null,"abstract":"FOXD2 Adjacent Opposite Strand RNA 1 (FOXD2-AS1), a long noncoding RNA (lncRNA), exhibits specifically elevated in numerous cancerous cells. Numerous studies have shown that FOXD2-AS1 encourages cellular proliferation, migration and invasion. Nevertheless, the exact mechanism through which FOXD2-AS1 contributes to prostate cancer (PCa) remains unclear. Consequently, we aimed to explore the implications of FOXD2-AS1 on the growth of PCa. Initially, an elevation of FOXD2-AS1 observed in PCa cells (PC-3, DU145 and Lncap) than the prostate normal cell line RWPE2. Then, PC-3 cells were tranafected with shFOXD2-AS1, sh-Numerical Control (shNC) or FOXD2-AS1 to assess the implications of FOXD2-AS. Cell growth was measured with cell counting kit-8 (CCK8) and 5-ethynyl-2′-deoxyuridine (EDU) assays, and cell invasion and migration were assessed by Transwell assays, which demonstrated that FOXD2-AS1 silence impeded proliferation, migration and invasion of PC-3 cells. Additionally, we discovered that FOXD2-AS1 bonded with miR-206/programmed cell death protein 10 (PDCD10) trough analyzing the interaction sites of lncRNA, miRNA and protein. Then, these interaction abilities were confirmed by dual-luciferase reporter assays and RT-qPCR, suggesting FOXD2-AS1 could upregulate the amount of PDCD10 through suppressing miR-206. Furthermore, the role of FOXD2-AS1 silencing on PCa carcinogenesis were assessed. In vivo experiment, shFOXD2-AS1 led to a notable reduction in both the size and weight of PCa. These findings indicated that FOXD2-AS1 silencing effectively hindered the progression of prostate cancer. In conclusion, the upregulation of FOXD2-AS1 was observed in PCa, and the knockdown of FOXD2-AS1 could alleviated tumor development by targeting miR-206 to upregulate PDCD10 expression.","PeriodicalId":16360,"journal":{"name":"Journal of Men's Health","volume":"64 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Men's Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22514/jomh.2023.092","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
FOXD2 Adjacent Opposite Strand RNA 1 (FOXD2-AS1), a long noncoding RNA (lncRNA), exhibits specifically elevated in numerous cancerous cells. Numerous studies have shown that FOXD2-AS1 encourages cellular proliferation, migration and invasion. Nevertheless, the exact mechanism through which FOXD2-AS1 contributes to prostate cancer (PCa) remains unclear. Consequently, we aimed to explore the implications of FOXD2-AS1 on the growth of PCa. Initially, an elevation of FOXD2-AS1 observed in PCa cells (PC-3, DU145 and Lncap) than the prostate normal cell line RWPE2. Then, PC-3 cells were tranafected with shFOXD2-AS1, sh-Numerical Control (shNC) or FOXD2-AS1 to assess the implications of FOXD2-AS. Cell growth was measured with cell counting kit-8 (CCK8) and 5-ethynyl-2′-deoxyuridine (EDU) assays, and cell invasion and migration were assessed by Transwell assays, which demonstrated that FOXD2-AS1 silence impeded proliferation, migration and invasion of PC-3 cells. Additionally, we discovered that FOXD2-AS1 bonded with miR-206/programmed cell death protein 10 (PDCD10) trough analyzing the interaction sites of lncRNA, miRNA and protein. Then, these interaction abilities were confirmed by dual-luciferase reporter assays and RT-qPCR, suggesting FOXD2-AS1 could upregulate the amount of PDCD10 through suppressing miR-206. Furthermore, the role of FOXD2-AS1 silencing on PCa carcinogenesis were assessed. In vivo experiment, shFOXD2-AS1 led to a notable reduction in both the size and weight of PCa. These findings indicated that FOXD2-AS1 silencing effectively hindered the progression of prostate cancer. In conclusion, the upregulation of FOXD2-AS1 was observed in PCa, and the knockdown of FOXD2-AS1 could alleviated tumor development by targeting miR-206 to upregulate PDCD10 expression.
期刊介绍:
JOMH is an international, peer-reviewed, open access journal. JOMH publishes cutting-edge advances in a wide range of diseases and conditions, including diagnostic procedures, therapeutic management strategies, and innovative clinical research in gender-based biology. It also addresses sexual disparities in health, life expectancy, lifestyle and behaviors and so on. Scientists are encouraged to publish their experimental, theoretical, and descriptive studies and observations in as much detail as possible.