Rotational-electric principles of RNA/DNA and viability

IF 1.1 Q4 BIOPHYSICS
Roman Marks, Piotr H. Pawłowski
{"title":"Rotational-electric principles of RNA/DNA and viability","authors":"Roman Marks, Piotr H. Pawłowski","doi":"10.3934/biophy.2023023","DOIUrl":null,"url":null,"abstract":"<abstract> <p>Photographic investigations of rising bubbles in seawater revealed that each bubble may conduct a single or bi-spiraling motion, which resemble architecture of RNA or DNA respectively. The rotational motion results from acceleration of ionic hydrates, which are separated to anionic and cationic domains at the upper and bottom curvatures of the bubble. Afterwards, rotational motion undergoes further acceleration in the bubble upper vortex, followed by deceleration at the vortex tip. During that phase, the spiraling motion cause significant friction that result in polarization of electronegative atoms of H, C, N, O and P. These may be simultaneously arranged around a whirling cationic strands and form phosphate groups, ribose and nitrogen bases equipped with H<sub>2</sub> and H<sub>3</sub> rotors. It is hypothesized that such hydrogen rotors may operate as generators of electrons, which may be detached from valence shells of electropositive atoms. Then, electrons may flow via nitrogen bases and deoxyribose or ribose to phosphate groups. Next, the negatively charged edges of phosphate groups may attract cationic hydrates and energize their rotational motion in the grooves, then causing also its spiraling projection outward. That may be responsible for replication of nucleotides and its arrangement along the cationic flow into RNA or DNA polymers, in the same manner as originally produced by rising bubbles. Moreover, it points that hydrogen rotors may generate energy needed for viability as well as interact with all physical and chemical fields.</p> </abstract>","PeriodicalId":7529,"journal":{"name":"AIMS Biophysics","volume":"26 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/biophy.2023023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Photographic investigations of rising bubbles in seawater revealed that each bubble may conduct a single or bi-spiraling motion, which resemble architecture of RNA or DNA respectively. The rotational motion results from acceleration of ionic hydrates, which are separated to anionic and cationic domains at the upper and bottom curvatures of the bubble. Afterwards, rotational motion undergoes further acceleration in the bubble upper vortex, followed by deceleration at the vortex tip. During that phase, the spiraling motion cause significant friction that result in polarization of electronegative atoms of H, C, N, O and P. These may be simultaneously arranged around a whirling cationic strands and form phosphate groups, ribose and nitrogen bases equipped with H2 and H3 rotors. It is hypothesized that such hydrogen rotors may operate as generators of electrons, which may be detached from valence shells of electropositive atoms. Then, electrons may flow via nitrogen bases and deoxyribose or ribose to phosphate groups. Next, the negatively charged edges of phosphate groups may attract cationic hydrates and energize their rotational motion in the grooves, then causing also its spiraling projection outward. That may be responsible for replication of nucleotides and its arrangement along the cationic flow into RNA or DNA polymers, in the same manner as originally produced by rising bubbles. Moreover, it points that hydrogen rotors may generate energy needed for viability as well as interact with all physical and chemical fields.

RNA/DNA的旋转电原理和活力
& lt; abstract>对海水中上升气泡的摄影研究显示,每个气泡可能进行单螺旋或双螺旋运动,这分别类似于RNA或DNA的结构。旋转运动是由离子水合物的加速引起的,离子水合物在气泡的上部和底部曲率处被分离到阴离子和阳离子域。之后,旋转运动在气泡上部涡处进一步加速,随后在涡尖处减速。在这一阶段,螺旋运动引起明显的摩擦,导致氢、碳、氮、氧和磷的电负性原子极化。这些原子可能同时排列在旋转的阳离子链周围,形成磷酸基、核糖和氮基,并配有H<sub>2</sub>和H< sub> 3 & lt; / sub>转子。据推测,这种氢转子可以作为电子的发生器,而电子可以从正电原子的价壳层中分离出来。然后,电子可能通过氮碱基和脱氧核糖或核糖流向磷酸基团。其次,磷酸基团带负电荷的边缘可能会吸引阳离子水合物,并激活它们在凹槽中的旋转运动,然后也导致其向外螺旋投影。这可能是核苷酸复制的原因,它沿着阳离子流排列成RNA或DNA聚合物,与最初由上升的气泡产生的方式相同。此外,它指出氢转子可以产生生存所需的能量,并与所有物理和化学领域相互作用。& lt; / abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Biophysics
AIMS Biophysics BIOPHYSICS-
CiteScore
2.40
自引率
20.00%
发文量
16
审稿时长
8 weeks
期刊介绍: AIMS Biophysics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of biophysics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Biophysics welcomes, but not limited to, the papers from the following topics: · Structural biology · Biophysical technology · Bioenergetics · Membrane biophysics · Cellular Biophysics · Electrophysiology · Neuro-Biophysics · Biomechanics · Systems biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信