Combined passive and active flow control for fixed-wing micro air vehicles

IF 1.5 4区 工程技术 Q2 ENGINEERING, AEROSPACE
A Esmaeili, JMM Sousa
{"title":"Combined passive and active flow control for fixed-wing micro air vehicles","authors":"A Esmaeili, JMM Sousa","doi":"10.1177/17568293231197127","DOIUrl":null,"url":null,"abstract":"This study presents the design, implementation, and assessment of a combined passive and active flow control technique with the aim of increasing the aerodynamic performance of fixed-wing Micro Air Vehicles (MAVs). Power consumption restrictions in MAVs support the choice of passive flow control solutions such as the use of a modified (tubercled) wing leading edge. This strategy successfully allows to delay and mitigate aerodynamic stall but detrimental effects are found at pre-stall operating conditions. In order to retrieve the lift-generation capabilities of the baseline wing at pre-stall, a subsidiary active flow control method making use of air blowing was designed and installed in the modified wing. Guidance to the selection of optimum settings was provided by experimental and computational analyses. The resulting hybrid flow control system demonstrated its effectiveness, thus producing generalized lift enhancements irrespectively of the attitude of the wing.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17568293231197127","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the design, implementation, and assessment of a combined passive and active flow control technique with the aim of increasing the aerodynamic performance of fixed-wing Micro Air Vehicles (MAVs). Power consumption restrictions in MAVs support the choice of passive flow control solutions such as the use of a modified (tubercled) wing leading edge. This strategy successfully allows to delay and mitigate aerodynamic stall but detrimental effects are found at pre-stall operating conditions. In order to retrieve the lift-generation capabilities of the baseline wing at pre-stall, a subsidiary active flow control method making use of air blowing was designed and installed in the modified wing. Guidance to the selection of optimum settings was provided by experimental and computational analyses. The resulting hybrid flow control system demonstrated its effectiveness, thus producing generalized lift enhancements irrespectively of the attitude of the wing.
固定翼微型飞行器的被动与主动组合流动控制
为了提高固定翼微型飞行器(MAVs)的气动性能,本研究提出了一种被动和主动相结合的流动控制技术的设计、实现和评估。MAVs的功耗限制支持被动流量控制解决方案的选择,例如使用改进的(结节状)机翼前缘。这种策略可以成功地延迟和减轻气动失速,但在失速前的操作条件下会产生不利影响。为了恢复基线机翼在失速前的升力产生能力,设计并安装了一种利用吹气的辅助主动气流控制方法。通过实验和计算分析,为最佳设置的选择提供了指导。所得到的混合气流控制系统证明了它的有效性,从而产生了广义升力增强,而与机翼的姿态无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
7.10%
发文量
13
审稿时长
>12 weeks
期刊介绍: The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信