The Immunogenic Connection of Thermal and Nonthermal Molecular Effects in Modulated Electro-Hyperthermia

Attila Marcell Szász, Gergö Lóránt, András Szász, Gyula Szigeti
{"title":"The Immunogenic Connection of Thermal and Nonthermal Molecular Effects in Modulated Electro-Hyperthermia","authors":"Attila Marcell Szász, Gergö Lóránt, András Szász, Gyula Szigeti","doi":"10.4236/ojbiphy.2023.134007","DOIUrl":null,"url":null,"abstract":"Hyperthermia in oncology is an emerging complementary therapy. The clinical results depend on multiple conditional factors, like the type of cancer, the stage, the applied treatment device, and the complementary conventional therapy. The molecular effect could also be different depending on the temperature, heating dose, kind of energy transfer, and timing sequences compared to the concomitant treatment. This article examines the molecular impacts of a specific technique used in oncological hyperthermia called modulated electro-hyperthermia (mEHT). What sets mEHT apart is its emphasis on harnessing the combined effects of thermal and nonthermal factors. Nonthermal energy absorption occurs through the excitation of molecules, while the thermal component ensures the ideal conditions for this process. The applied radiofrequency current selects the malignant cells, and the modulation drives the nonthermal effects to immunogenic cell death, helping to develop tumor-specific antitumoral immune reactions. The synergy of the thermal and nonthermal components excites the lipid-assembled clusters of transmembrane proteins (membrane rafts) as the channels of transient receptor potentials (TRPs), the heat-shock proteins (HSPs), the voltage-gated channels, and the voltage-sensitive phosphatases (VSPs). All these transmembrane compartments channeling various ionic species (like calcium and proton) interact with the cytoskeleton and are involved in the apoptotic signal pathways.","PeriodicalId":19584,"journal":{"name":"Open Journal of Biophysics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ojbiphy.2023.134007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperthermia in oncology is an emerging complementary therapy. The clinical results depend on multiple conditional factors, like the type of cancer, the stage, the applied treatment device, and the complementary conventional therapy. The molecular effect could also be different depending on the temperature, heating dose, kind of energy transfer, and timing sequences compared to the concomitant treatment. This article examines the molecular impacts of a specific technique used in oncological hyperthermia called modulated electro-hyperthermia (mEHT). What sets mEHT apart is its emphasis on harnessing the combined effects of thermal and nonthermal factors. Nonthermal energy absorption occurs through the excitation of molecules, while the thermal component ensures the ideal conditions for this process. The applied radiofrequency current selects the malignant cells, and the modulation drives the nonthermal effects to immunogenic cell death, helping to develop tumor-specific antitumoral immune reactions. The synergy of the thermal and nonthermal components excites the lipid-assembled clusters of transmembrane proteins (membrane rafts) as the channels of transient receptor potentials (TRPs), the heat-shock proteins (HSPs), the voltage-gated channels, and the voltage-sensitive phosphatases (VSPs). All these transmembrane compartments channeling various ionic species (like calcium and proton) interact with the cytoskeleton and are involved in the apoptotic signal pathways.
调制电热疗法中热和非热分子效应的免疫原性联系
肿瘤热疗是一种新兴的辅助疗法。临床结果取决于多种条件因素,如癌症的类型、分期、应用的治疗设备和补充的常规疗法。与伴随治疗相比,分子效应也可能因温度、加热剂量、能量转移种类和时间顺序而有所不同。本文探讨了一种用于肿瘤热疗的特定技术的分子影响,称为调制电热疗(mEHT)。mEHT的与众不同之处在于它强调利用热和非热因素的综合影响。非热能吸收是通过分子的激发发生的,而热组分保证了这一过程的理想条件。应用射频电流选择恶性细胞,调制驱动非热效应导致免疫原性细胞死亡,有助于产生肿瘤特异性抗肿瘤免疫反应。热和非热组分的协同作用激发了脂质组装的跨膜蛋白簇(膜筏),作为瞬时受体电位(TRPs)、热休克蛋白(HSPs)、电压门控通道和电压敏感磷酸酶(VSPs)的通道。所有这些跨膜腔室引导各种离子(如钙和质子)与细胞骨架相互作用,并参与凋亡信号通路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信