A BFGS method using inexact gradient for general nonlinear equations

IF 0.4 4区 数学 Q4 MATHEMATICS, APPLIED
ZHOU Weijun, ZHANG Li
{"title":"A BFGS method using inexact gradient for general nonlinear equations","authors":"ZHOU Weijun, ZHANG Li","doi":"10.61208/pjo-2023-027","DOIUrl":null,"url":null,"abstract":"A globally and superlinearly convergent BFGS methods is introduced to solve general nonlinear equations without computing exact gradient. Compared with existing Gauss-Newton-based BFGS type methods, the proposed method does not require conditions such as sysmmetry on the underlying function. Moreover, it can be suitably adjusted to solve nonlinear least squares problems and still guarantee global convergence. Some numerical results are reported are reported to show its efficiency.","PeriodicalId":49716,"journal":{"name":"Pacific Journal of Optimization","volume":"36 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61208/pjo-2023-027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A globally and superlinearly convergent BFGS methods is introduced to solve general nonlinear equations without computing exact gradient. Compared with existing Gauss-Newton-based BFGS type methods, the proposed method does not require conditions such as sysmmetry on the underlying function. Moreover, it can be suitably adjusted to solve nonlinear least squares problems and still guarantee global convergence. Some numerical results are reported are reported to show its efficiency.
一般非线性方程的非精确梯度BFGS方法
介绍了一种全局超线性收敛的BFGS方法,用于求解一般非线性方程,无需计算精确梯度。与现有的基于高斯-牛顿的BFGS型方法相比,该方法不需要底层函数的对称性等条件。此外,它可以适当调整以解决非线性最小二乘问题,并仍然保证全局收敛。数值结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pacific Journal of Optimization
Pacific Journal of Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-MATHEMATICS, APPLIED
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信