{"title":"An integer programming model for controlling dengue transmission","authors":"A.C. Mahasinghe, K.K.W.H. Erandi, S.S.N. Perera","doi":"10.1504/ijcsm.2023.133631","DOIUrl":null,"url":null,"abstract":"Prevailing dengue-control strategies in many developing countries yield only limited benefits due to non-optimality of those strategies. In this paper, we demonstrate how the same strategies could be altered using the same amount of resources in order to yield more fruitful results. Accordingly, we develop a binary integer programming model, aimed at minimising the total number of susceptible individuals with high-risk of being infected with dengue, by identifying the most influential dengue-infected individuals who could undergo an epidemiological isolation, subject to the conditions imposed by the topological properties of the epidemiological network and budgetary constraints. Further, we analyse the proposed epidemiological isolation to examine its adequacy in a real-world implementation.","PeriodicalId":45487,"journal":{"name":"International Journal of Computing Science and Mathematics","volume":"44 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2023.133631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Prevailing dengue-control strategies in many developing countries yield only limited benefits due to non-optimality of those strategies. In this paper, we demonstrate how the same strategies could be altered using the same amount of resources in order to yield more fruitful results. Accordingly, we develop a binary integer programming model, aimed at minimising the total number of susceptible individuals with high-risk of being infected with dengue, by identifying the most influential dengue-infected individuals who could undergo an epidemiological isolation, subject to the conditions imposed by the topological properties of the epidemiological network and budgetary constraints. Further, we analyse the proposed epidemiological isolation to examine its adequacy in a real-world implementation.