{"title":"Particle resolved direct numerical simulation of heat transfer in gas-solid flows","authors":"Ali Abbas Zaidi","doi":"10.1504/ijcsm.2023.133633","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to propose a new immersed boundary method for heat transfer calculations in gas-solid flows. In the proposed method, solid particles are fixed in the computational domain due to longer response times of particles (to mimic the gas-solid systems) and treated as sources of velocity and temperature. For calculations of fluid velocity and temperature, Navier-Stokes and energy equations are solved for fixed Cartesian grid. For the validation of the proposed method, number of benchmarking studies are done by comparing the simulation results with the studied problems in literature. Simulations showed good agreement with the literature results which verifies the accuracy and reliability of the immersed boundary method proposed in this paper.","PeriodicalId":45487,"journal":{"name":"International Journal of Computing Science and Mathematics","volume":"87 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2023.133633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this paper is to propose a new immersed boundary method for heat transfer calculations in gas-solid flows. In the proposed method, solid particles are fixed in the computational domain due to longer response times of particles (to mimic the gas-solid systems) and treated as sources of velocity and temperature. For calculations of fluid velocity and temperature, Navier-Stokes and energy equations are solved for fixed Cartesian grid. For the validation of the proposed method, number of benchmarking studies are done by comparing the simulation results with the studied problems in literature. Simulations showed good agreement with the literature results which verifies the accuracy and reliability of the immersed boundary method proposed in this paper.