Multi-coil MRI by analytic continuation

IF 0.9 4区 数学 Q2 MATHEMATICS
James W. Webber
{"title":"Multi-coil MRI by analytic continuation","authors":"James W. Webber","doi":"10.1515/jiip-2022-0046","DOIUrl":null,"url":null,"abstract":"Abstract We present novel reconstruction and stability analysis methodologies for two-dimensional, multi-coil MRI, based on analytic continuation ideas. We show that the 2-D, limited-data MRI inverse problem, whereby the missing parts of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝐤</m:mi> </m:math> {\\mathbf{k}} -space (Fourier space) are lines parallel to either <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>k</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> {k_{1}} or <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>k</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> {k_{2}} (i.e., the <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝐤</m:mi> </m:math> {\\mathbf{k}} -space axis), can be reduced to a set of 1-D Fredholm type inverse problems. The Fredholm equations are then solved to recover the 2-D image on 1-D line profiles (“slice-by-slice” imaging). The technique is tested on a range of medical in vivo images (e.g., brain, spine, cardiac), and phantom data. Our method is shown to offer optimal performance, in terms of structural similarity, when compared against similar methods from the literature, and when the <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝐤</m:mi> </m:math> {\\mathbf{k}} -space data is sub-sampled at random so as to simulate motion corruption. In addition, we present a Singular Value Decomposition (SVD) and stability analysis of the Fredholm operators, and compare the stability properties of different <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝐤</m:mi> </m:math> {\\mathbf{k}} -space sub-sampling schemes (e.g., random vs uniform accelerated sampling).","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"9 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jiip-2022-0046","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We present novel reconstruction and stability analysis methodologies for two-dimensional, multi-coil MRI, based on analytic continuation ideas. We show that the 2-D, limited-data MRI inverse problem, whereby the missing parts of 𝐤 {\mathbf{k}} -space (Fourier space) are lines parallel to either k 1 {k_{1}} or k 2 {k_{2}} (i.e., the 𝐤 {\mathbf{k}} -space axis), can be reduced to a set of 1-D Fredholm type inverse problems. The Fredholm equations are then solved to recover the 2-D image on 1-D line profiles (“slice-by-slice” imaging). The technique is tested on a range of medical in vivo images (e.g., brain, spine, cardiac), and phantom data. Our method is shown to offer optimal performance, in terms of structural similarity, when compared against similar methods from the literature, and when the 𝐤 {\mathbf{k}} -space data is sub-sampled at random so as to simulate motion corruption. In addition, we present a Singular Value Decomposition (SVD) and stability analysis of the Fredholm operators, and compare the stability properties of different 𝐤 {\mathbf{k}} -space sub-sampling schemes (e.g., random vs uniform accelerated sampling).
解析延拓的多线圈MRI
摘要基于解析延拓思想,提出了一种新的二维多线圈MRI重建和稳定性分析方法。我们证明了二维有限数据MRI反问题,其中𝐤{\mathbf{k}}空间(傅里叶空间)的缺失部分是平行于k1 {k_{1}}或k2 {k_{2}}的线(即𝐤{\mathbf{k}} -空间轴),可以简化为一组一维Fredholm型反问题。然后求解Fredholm方程以恢复一维线轮廓上的二维图像(“逐片”成像)。该技术在一系列医学活体图像(例如,脑、脊柱、心脏)和幻影数据上进行了测试。与文献中的类似方法相比,当对𝐤{\mathbf{k}}空间数据进行随机子采样以模拟运动损坏时,我们的方法在结构相似性方面显示出最佳性能。此外,我们给出了奇异值分解(SVD)和Fredholm算子的稳定性分析,并比较了不同𝐤{\mathbf{k}} -空间子采样方案(例如随机与均匀加速采样)的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inverse and Ill-Posed Problems
Journal of Inverse and Ill-Posed Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published. Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest. The following topics are covered: Inverse problems existence and uniqueness theorems stability estimates optimization and identification problems numerical methods Ill-posed problems regularization theory operator equations integral geometry Applications inverse problems in geophysics, electrodynamics and acoustics inverse problems in ecology inverse and ill-posed problems in medicine mathematical problems of tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信