{"title":"Enabling Resource-Efficient AIoT System With Cross-Level Optimization: A Survey","authors":"Sicong Liu;Bin Guo;Cheng Fang;Ziqi Wang;Shiyan Luo;Zimu Zhou;Zhiwen Yu","doi":"10.1109/COMST.2023.3319952","DOIUrl":null,"url":null,"abstract":"The emerging field of artificial intelligence of things (AIoT, AI+IoT) is driven by the widespread use of intelligent infrastructures and the impressive success of deep learning (DL). With the deployment of DL on various intelligent infrastructures featuring rich sensors and weak DL computing capabilities, a diverse range of AIoT applications has become possible. However, DL models are notoriously resource-intensive. Existing research strives to realize near-/realtime inference of AIoT live data and low-cost training using AIoT datasets on resource-scare infrastructures. Accordingly, the accuracy and responsiveness of DL models are bounded by resource availability. To this end, the algorithm-system co-design that jointly optimizes the resource-friendly DL models and model-adaptive system scheduling improves the runtime resource availability and thus pushes the performance boundary set by the standalone level. Unlike previous surveys on resource-friendly DL models or hand-crafted DL compilers/frameworks with partially fine-tuned components, this survey aims to provide a broader optimization space for more free resource-performance tradeoffs. The cross-level optimization landscape involves various granularity, including the DL model, computation graph, operator, memory schedule, and hardware instructor in both on-device and distributed paradigms. Furthermore, due to the dynamic nature of AIoT context, which includes heterogeneous hardware, agnostic sensing data, varying user-specified performance demands, and resource constraints, this survey explores the context-aware inter-/intra-device controllers for automatic cross-level adaptation. Additionally, we identify some potential directions for resource-efficient AIoT systems. By consolidating problems and techniques scattered over diverse levels, we aim to help readers understand their connections and stimulate further discussions.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 1","pages":"389-427"},"PeriodicalIF":34.4000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10265028/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The emerging field of artificial intelligence of things (AIoT, AI+IoT) is driven by the widespread use of intelligent infrastructures and the impressive success of deep learning (DL). With the deployment of DL on various intelligent infrastructures featuring rich sensors and weak DL computing capabilities, a diverse range of AIoT applications has become possible. However, DL models are notoriously resource-intensive. Existing research strives to realize near-/realtime inference of AIoT live data and low-cost training using AIoT datasets on resource-scare infrastructures. Accordingly, the accuracy and responsiveness of DL models are bounded by resource availability. To this end, the algorithm-system co-design that jointly optimizes the resource-friendly DL models and model-adaptive system scheduling improves the runtime resource availability and thus pushes the performance boundary set by the standalone level. Unlike previous surveys on resource-friendly DL models or hand-crafted DL compilers/frameworks with partially fine-tuned components, this survey aims to provide a broader optimization space for more free resource-performance tradeoffs. The cross-level optimization landscape involves various granularity, including the DL model, computation graph, operator, memory schedule, and hardware instructor in both on-device and distributed paradigms. Furthermore, due to the dynamic nature of AIoT context, which includes heterogeneous hardware, agnostic sensing data, varying user-specified performance demands, and resource constraints, this survey explores the context-aware inter-/intra-device controllers for automatic cross-level adaptation. Additionally, we identify some potential directions for resource-efficient AIoT systems. By consolidating problems and techniques scattered over diverse levels, we aim to help readers understand their connections and stimulate further discussions.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.