Fault Prognosis of Turbofan Engines

IF 1.4 Q2 ENGINEERING, MULTIDISCIPLINARY
Joseph Cohen, Xun Huan, Jun Ni
{"title":"Fault Prognosis of Turbofan Engines","authors":"Joseph Cohen, Xun Huan, Jun Ni","doi":"10.36001/ijphm.2023.v14i2.3486","DOIUrl":null,"url":null,"abstract":"In the era of industrial big data, prognostics and health management is essential to improve the prediction of future failures to minimize inventory, maintenance, and human costs. Used for the 2021 PHM Data Challenge, the new Commercial Modular Aero-Propulsion System Simulation dataset from NASA is an open-source benchmark containing simulated turbofan engine units flown under realistic flight conditions. Deep learning approaches implemented previously for this application attempt to predict the remaining useful life of the engine units, but have not utilized labeled failure mode information, impeding practical usage and explainability. To address these limitations, a new prognostics approach is formulated with a customized loss function to simultaneously predict the current health state, the eventual failing component(s), and the remaining useful life. The proposed method incorporates principal component analysis to orthogonalize statistical time-domain features, which are inputs into supervised regressors such as random forests, extreme random forests, XGBoost, and artificial neural networks. The highest performing algorithm, ANN–Flux with PCA augmentation, achieves AUROC and AUPR scores exceeding 0.94 for each classification on average. In addition to predicting eventual failures with high accuracy, ANN–Flux achieves comparable remaining useful life RMSE for the same test split of the dataset when benchmarked against past work, with significantly less computational cost.","PeriodicalId":42100,"journal":{"name":"International Journal of Prognostics and Health Management","volume":"28 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2023.v14i2.3486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In the era of industrial big data, prognostics and health management is essential to improve the prediction of future failures to minimize inventory, maintenance, and human costs. Used for the 2021 PHM Data Challenge, the new Commercial Modular Aero-Propulsion System Simulation dataset from NASA is an open-source benchmark containing simulated turbofan engine units flown under realistic flight conditions. Deep learning approaches implemented previously for this application attempt to predict the remaining useful life of the engine units, but have not utilized labeled failure mode information, impeding practical usage and explainability. To address these limitations, a new prognostics approach is formulated with a customized loss function to simultaneously predict the current health state, the eventual failing component(s), and the remaining useful life. The proposed method incorporates principal component analysis to orthogonalize statistical time-domain features, which are inputs into supervised regressors such as random forests, extreme random forests, XGBoost, and artificial neural networks. The highest performing algorithm, ANN–Flux with PCA augmentation, achieves AUROC and AUPR scores exceeding 0.94 for each classification on average. In addition to predicting eventual failures with high accuracy, ANN–Flux achieves comparable remaining useful life RMSE for the same test split of the dataset when benchmarked against past work, with significantly less computational cost.
涡扇发动机故障预测
在工业大数据时代,预测和健康管理对于改善对未来故障的预测以最大限度地减少库存、维护和人力成本至关重要。用于2021年PHM数据挑战赛的新商业模块化航空推进系统模拟数据集是一个开源基准,包含在现实飞行条件下飞行的模拟涡扇发动机单元。之前在该应用中实施的深度学习方法试图预测发动机单元的剩余使用寿命,但没有使用标记的故障模式信息,阻碍了实际使用和可解释性。为了解决这些限制,我们制定了一种新的预测方法,该方法使用定制的损失函数来同时预测当前健康状态、最终失效组件和剩余使用寿命。该方法采用主成分分析对统计时域特征进行正交化,这些特征是随机森林、极端随机森林、XGBoost和人工神经网络等监督回归量的输入。表现最好的算法是ANN-Flux加PCA增强算法,每个分类的AUROC和AUPR得分平均超过0.94。除了以高精度预测最终故障外,ANN-Flux在与过去工作进行基准测试时,对于数据集的相同测试分割,可以实现相当的剩余使用寿命RMSE,并且计算成本显着降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.50%
发文量
18
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信