Numerical Approximation of Oscillatory Initial Value Problem Using the Homotopy Analysis Algorithm

P.O Obafaiye, S.O. Imoni, D. I. Lanlege
{"title":"Numerical Approximation of Oscillatory Initial Value Problem Using the Homotopy Analysis Algorithm","authors":"P.O Obafaiye, S.O. Imoni, D. I. Lanlege","doi":"10.37745/bjmas.2022.0206","DOIUrl":null,"url":null,"abstract":"In this paper, we present numerical approximation for oscillatory initial value problems (IVPs) using the homotopy analysis algorithm. The convergence of the method is discussed and numerical experiments are presented to illustrate the computational effectiveness of the algorithm. The results obtained are in good agreement with the exact solutions and Adomian decomposition method (ADM). These results show that the algorithm introduced here is accurate and easy to apply without linearization.","PeriodicalId":479838,"journal":{"name":"British Journal of Multidisciplinary and Advanced Studies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Multidisciplinary and Advanced Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37745/bjmas.2022.0206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present numerical approximation for oscillatory initial value problems (IVPs) using the homotopy analysis algorithm. The convergence of the method is discussed and numerical experiments are presented to illustrate the computational effectiveness of the algorithm. The results obtained are in good agreement with the exact solutions and Adomian decomposition method (ADM). These results show that the algorithm introduced here is accurate and easy to apply without linearization.
用同伦分析算法数值逼近振荡初值问题
本文利用同伦分析算法给出了振荡初值问题的数值逼近。讨论了该方法的收敛性,并通过数值实验说明了该算法的计算有效性。所得结果与精确解和Adomian分解方法(ADM)吻合较好。结果表明,该算法精度高,易于应用,无需线性化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信