Sudarshan Kumar Kenettinkara, Nikhil Manoj, Veerappa Gowda G. D.
{"title":"Convergence of a second-order scheme for non-local conservation laws","authors":"Sudarshan Kumar Kenettinkara, Nikhil Manoj, Veerappa Gowda G. D.","doi":"10.1051/m2an/2023080","DOIUrl":null,"url":null,"abstract":"In this article, we present the convergence analysis of a second-order numerical scheme for traffic flow models that incorporate non-local conservation laws. We combine a MUSCL-type spatial reconstruction with strong stability preserving Runge-Kutta time-stepping to devise a fully discrete second-order scheme. The resulting scheme is shown to converge to a weak solution by establishing the maximum principle, bounded variation estimates and L1 Lipschitz continuity in time. Further, using a space-step dependent slope limiter, we prove its convergence to the entropy solution. We also propose a MUSCL-Hancock type second-order scheme which requires only one intermediate stage unlike the Runge-Kutta schemes and is easier to implement. The performance of the proposed second-order schemes in comparison to a first-order scheme is demonstrated through several numerical experiments.","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"51 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/m2an/2023080","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we present the convergence analysis of a second-order numerical scheme for traffic flow models that incorporate non-local conservation laws. We combine a MUSCL-type spatial reconstruction with strong stability preserving Runge-Kutta time-stepping to devise a fully discrete second-order scheme. The resulting scheme is shown to converge to a weak solution by establishing the maximum principle, bounded variation estimates and L1 Lipschitz continuity in time. Further, using a space-step dependent slope limiter, we prove its convergence to the entropy solution. We also propose a MUSCL-Hancock type second-order scheme which requires only one intermediate stage unlike the Runge-Kutta schemes and is easier to implement. The performance of the proposed second-order schemes in comparison to a first-order scheme is demonstrated through several numerical experiments.
期刊介绍:
The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains.
Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics.
Long papers are very welcome.
Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.