Inclusions of $C^*$-algebras arising from fixed-point algebras

Pub Date : 2023-10-02 DOI:10.4171/ggd/743
Siegfried Echterhoff, Mikael Rørdam
{"title":"Inclusions of $C^*$-algebras arising from fixed-point algebras","authors":"Siegfried Echterhoff, Mikael Rørdam","doi":"10.4171/ggd/743","DOIUrl":null,"url":null,"abstract":"We examine inclusions of $C^$-algebras of the form $A^H \\subseteq A \\rtimes\\_{r} G$, where $G$ and $H$ are groups acting on a unital simple $C^$-algebra $A$ by outer automorphisms and $H$ is finite. It follows from a theorem of Izumi that $A^H \\subseteq A$ is $C^$-irreducible, in the sense that all intermediate $C^$-algebras are simple. We show that $A^H \\subseteq A \\rtimes\\_{r} G$ is $C^$-irreducible for all $G$ and $H$ as above if and only if $G$ and $H$ have trivial intersection in the outer automorphisms of $A$, and we give a\\~Galois type classification of all intermediate $C^$-algebras in the case when $H$ is abelian and the two actions of $G$ and $H$ on $A$ commute. We illustrate these results with examples of outer group actions on the irrational rotation $C^$-algebras. We exhibit, among other examples, $C^$-irreducible inclusions of AF-algebras that have intermediate $C^$-algebras that are not AF-algebras; in fact, the irrational rotation $C^$-algebra appears as an intermediate $C^\\*$-algebra.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/ggd/743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We examine inclusions of $C^$-algebras of the form $A^H \subseteq A \rtimes\_{r} G$, where $G$ and $H$ are groups acting on a unital simple $C^$-algebra $A$ by outer automorphisms and $H$ is finite. It follows from a theorem of Izumi that $A^H \subseteq A$ is $C^$-irreducible, in the sense that all intermediate $C^$-algebras are simple. We show that $A^H \subseteq A \rtimes\_{r} G$ is $C^$-irreducible for all $G$ and $H$ as above if and only if $G$ and $H$ have trivial intersection in the outer automorphisms of $A$, and we give a\~Galois type classification of all intermediate $C^$-algebras in the case when $H$ is abelian and the two actions of $G$ and $H$ on $A$ commute. We illustrate these results with examples of outer group actions on the irrational rotation $C^$-algebras. We exhibit, among other examples, $C^$-irreducible inclusions of AF-algebras that have intermediate $C^$-algebras that are not AF-algebras; in fact, the irrational rotation $C^$-algebra appears as an intermediate $C^\*$-algebra.
分享
查看原文
由不动点代数产生的$C^*$-代数的包含
我们研究了形式为$A^H \subseteq A \r \ G$的$C^$-代数的包含,其中$G$和$H$是通过外自同构作用于一元简单$C^$-代数$A$的群,且$H$是有限的。由Izumi的定理可知,a ^H的子集a $是C^$-不可约的,即所有中间的C^$-代数都是简单的。证明了对于上述所有$G$和$H$,当且仅当$G$和$H$在$A$的外自同构中有平凡交时,$A^H $的子集$A \r \ G$是$C^$-不可约的,并给出了在$H$是阿贝的情况下,所有中间$C^$-代数的$G$和$H$对$A$交换的两个作用下的$G$和$H$的$伽罗瓦类型分类。我们用无理数旋转$C^$-代数上的外群作用举例来说明这些结果。在其他例子中,我们展示了af -代数的$C^$-不可约包含,它们具有非af -代数的中间$C^$-代数;事实上,无理数旋转$C^$-代数表现为中间$C^\*$-代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信