A Hybrid Brain-Computer Interface Using Motor Imagery and SSVEP Based on Convolutional Neural Network

Wenwei Luo, Wanguang Yin, Quanying Liu, Youzhi Qu
{"title":"A Hybrid Brain-Computer Interface Using Motor Imagery and SSVEP Based on Convolutional Neural Network","authors":"Wenwei Luo, Wanguang Yin, Quanying Liu, Youzhi Qu","doi":"10.1080/27706710.2023.2258938","DOIUrl":null,"url":null,"abstract":"The key to electroencephalography (EEG)-based brain-computer interface (BCI) lies in neural decoding, and its accuracy can be improved by using hybrid BCI paradigms, that is, fusing multiple paradigms. However, hybrid BCIs usually require separate processing processes for EEG signals in each paradigm, which greatly reduces the efficiency of EEG feature extraction and the generalizability of the model. Here, we propose a two-stream convolutional neural network (TSCNN) based hybrid brain-computer interface. It combines steady-state visual evoked potential (SSVEP) and motor imagery (MI) paradigms. TSCNN automatically learns to extract EEG features in the two paradigms in the training process, and improves the decoding accuracy by 25.4% compared with the MI mode, and 2.6% compared with SSVEP mode in the test data. Moreover, the versatility of TSCNN is verified as it provides considerable performance in both single-mode (70.2% for MI, 93.0% for SSVEP) and hybrid-mode scenarios (95.6% for MI-SSVEP hybrid). Our work will facilitate the real-world applications of EEG-based BCI systems.","PeriodicalId":497306,"journal":{"name":"Brain-Apparatus Communication A Journal of Bacomics","volume":"231 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-Apparatus Communication A Journal of Bacomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/27706710.2023.2258938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The key to electroencephalography (EEG)-based brain-computer interface (BCI) lies in neural decoding, and its accuracy can be improved by using hybrid BCI paradigms, that is, fusing multiple paradigms. However, hybrid BCIs usually require separate processing processes for EEG signals in each paradigm, which greatly reduces the efficiency of EEG feature extraction and the generalizability of the model. Here, we propose a two-stream convolutional neural network (TSCNN) based hybrid brain-computer interface. It combines steady-state visual evoked potential (SSVEP) and motor imagery (MI) paradigms. TSCNN automatically learns to extract EEG features in the two paradigms in the training process, and improves the decoding accuracy by 25.4% compared with the MI mode, and 2.6% compared with SSVEP mode in the test data. Moreover, the versatility of TSCNN is verified as it provides considerable performance in both single-mode (70.2% for MI, 93.0% for SSVEP) and hybrid-mode scenarios (95.6% for MI-SSVEP hybrid). Our work will facilitate the real-world applications of EEG-based BCI systems.
基于卷积神经网络的运动图像和SSVEP混合脑机接口
基于脑电图(EEG)的脑机接口(BCI)的关键在于神经解码,采用混合脑机接口范式,即融合多种脑机接口范式,可以提高脑机接口解码的准确率。然而,混合脑机接口通常需要对每种范式的脑电信号进行单独的处理过程,这大大降低了脑电信号特征提取的效率和模型的可泛化性。本文提出了一种基于双流卷积神经网络(TSCNN)的混合脑机接口。它结合了稳态视觉诱发电位(SSVEP)和运动意象(MI)范式。TSCNN在训练过程中自动学习提取两种范式下的脑电特征,在测试数据中,与MI模式相比,解码准确率提高了25.4%,与SSVEP模式相比,解码准确率提高了2.6%。此外,TSCNN的多功能性得到了验证,因为它在单模(MI为70.2%,SSVEP为93.0%)和混合模式场景(MI-SSVEP混合场景为95.6%)中都提供了可观的性能。我们的工作将促进基于脑电图的脑机接口系统的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信