Hodge symmetry for rigid varieties via $\log$ hard Lefschetz

IF 0.6 3区 数学 Q3 MATHEMATICS
Piotr Achinger
{"title":"Hodge symmetry for rigid varieties via $\\log$ hard Lefschetz","authors":"Piotr Achinger","doi":"10.4310/mrl.2023.v30.n1.a1","DOIUrl":null,"url":null,"abstract":"Motivated by a question of Hansen and Li, we show that a smooth and proper rigid analytic space $X$ with projective reduction satisfies Hodge symmetry in the following situations: (1) the base non-archimedean field $K$ is of residue characteristic zero, (2) $K$ is $p$-adic and $X$ has good ordinary reduction, (3) $K$ is $p$-adic and $X$ has combinatorial reduction.' We also reprove a version of their result, Hodge symmetry for $H^1$, without the use of moduli spaces of semistable sheaves. All of this relies on cases of Kato's log hard Lefschetz conjecture, which we prove for $H^1$ and for log schemes of combinatorial type.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"78 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n1.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by a question of Hansen and Li, we show that a smooth and proper rigid analytic space $X$ with projective reduction satisfies Hodge symmetry in the following situations: (1) the base non-archimedean field $K$ is of residue characteristic zero, (2) $K$ is $p$-adic and $X$ has good ordinary reduction, (3) $K$ is $p$-adic and $X$ has combinatorial reduction.' We also reprove a version of their result, Hodge symmetry for $H^1$, without the use of moduli spaces of semistable sheaves. All of this relies on cases of Kato's log hard Lefschetz conjecture, which we prove for $H^1$ and for log schemes of combinatorial type.
通过$\log$ hard Lefschetz的刚性变量的Hodge对称
在Hansen和Li的一个问题的激励下,我们证明了具有投影约简的光滑固有刚性解析空间$X$在下列情况下满足Hodge对称:(1)基非阿基米德域$K$具有残差特征为零,(2)$K$为$p$-进,$X$具有良好的普通约简,(3)$K$为$p$-进,$X$具有组合约简。我们还在不使用半稳定轴的模空间的情况下,证明了他们的结果H^1的Hodge对称的一个版本。所有这些都依赖于加藤的log hard Lefschetz猜想,我们对H^1和组合型的log格式证明了这个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信