On a Hamiltonian regularization of scalar conservation laws

IF 1.1 3区 数学 Q1 MATHEMATICS
Billel Guelmame
{"title":"On a Hamiltonian regularization of scalar conservation laws","authors":"Billel Guelmame","doi":"10.3934/dcds.2023118","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Hamiltonian regularization of scalar conservation laws, which is parametrized by $ \\ell>0 $ and conserves an $ H^1 $ energy. We prove the existence of global weak solutions for this regularization. Furthermore, we demonstrate that as $ \\ell $ approaches zero, the unique entropy solution of the original scalar conservation law is recovered, providing justification for the regularization.This regularization belongs to a family of non-diffusive, non-dispersive regularizations that were initially developed for the shallow-water system and extended later to the Euler system. This paper represents a validation of this family of regularizations in the scalar case.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"97 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a Hamiltonian regularization of scalar conservation laws, which is parametrized by $ \ell>0 $ and conserves an $ H^1 $ energy. We prove the existence of global weak solutions for this regularization. Furthermore, we demonstrate that as $ \ell $ approaches zero, the unique entropy solution of the original scalar conservation law is recovered, providing justification for the regularization.This regularization belongs to a family of non-diffusive, non-dispersive regularizations that were initially developed for the shallow-water system and extended later to the Euler system. This paper represents a validation of this family of regularizations in the scalar case.
标量守恒定律的哈密顿正则化
在本文中,我们提出了标量守恒律的哈密顿正则化,它被参数化为$ \ell>0 $,并且守恒$ H^1 $能量。我们证明了这种正则化的全局弱解的存在性。此外,我们证明了当$ \ well $趋于零时,原始标量守恒律的唯一熵解被恢复,为正则化提供了理由。这种正则化属于一种非扩散、非色散的正则化,最初是为浅水系统开发的,后来扩展到欧拉系统。本文在标量情况下对这类正则化进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
175
审稿时长
6 months
期刊介绍: DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信