{"title":"On a Hamiltonian regularization of scalar conservation laws","authors":"Billel Guelmame","doi":"10.3934/dcds.2023118","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Hamiltonian regularization of scalar conservation laws, which is parametrized by $ \\ell>0 $ and conserves an $ H^1 $ energy. We prove the existence of global weak solutions for this regularization. Furthermore, we demonstrate that as $ \\ell $ approaches zero, the unique entropy solution of the original scalar conservation law is recovered, providing justification for the regularization.This regularization belongs to a family of non-diffusive, non-dispersive regularizations that were initially developed for the shallow-water system and extended later to the Euler system. This paper represents a validation of this family of regularizations in the scalar case.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023118","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we propose a Hamiltonian regularization of scalar conservation laws, which is parametrized by $ \ell>0 $ and conserves an $ H^1 $ energy. We prove the existence of global weak solutions for this regularization. Furthermore, we demonstrate that as $ \ell $ approaches zero, the unique entropy solution of the original scalar conservation law is recovered, providing justification for the regularization.This regularization belongs to a family of non-diffusive, non-dispersive regularizations that were initially developed for the shallow-water system and extended later to the Euler system. This paper represents a validation of this family of regularizations in the scalar case.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.