{"title":"On a Hamiltonian regularization of scalar conservation laws","authors":"Billel Guelmame","doi":"10.3934/dcds.2023118","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Hamiltonian regularization of scalar conservation laws, which is parametrized by $ \\ell>0 $ and conserves an $ H^1 $ energy. We prove the existence of global weak solutions for this regularization. Furthermore, we demonstrate that as $ \\ell $ approaches zero, the unique entropy solution of the original scalar conservation law is recovered, providing justification for the regularization.This regularization belongs to a family of non-diffusive, non-dispersive regularizations that were initially developed for the shallow-water system and extended later to the Euler system. This paper represents a validation of this family of regularizations in the scalar case.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"97 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we propose a Hamiltonian regularization of scalar conservation laws, which is parametrized by $ \ell>0 $ and conserves an $ H^1 $ energy. We prove the existence of global weak solutions for this regularization. Furthermore, we demonstrate that as $ \ell $ approaches zero, the unique entropy solution of the original scalar conservation law is recovered, providing justification for the regularization.This regularization belongs to a family of non-diffusive, non-dispersive regularizations that were initially developed for the shallow-water system and extended later to the Euler system. This paper represents a validation of this family of regularizations in the scalar case.
期刊介绍:
DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.