{"title":"Hamiltonian properties in generalized lexicographic products","authors":"Jan Ekstein, Jakub Teska","doi":"10.7151/dmgt.2527","DOIUrl":null,"url":null,"abstract":"The lexicographic product $G[H]$ of two graphs $G$ and $H$ is obtained from $G$ by replacing each vertex with a copy of $H$ and adding all edges between any pair of copies corresponding to adjacent vertices of $G$. We generalize the lexicographic product such that we replace each vertex of $G$ with arbitrary graph on the same number of vertices. We present sufficient and necessary conditions for traceability, hamiltonicity and hamiltonian connectivity of $G[H]$ if $G$ is a path.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":"9 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/dmgt.2527","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The lexicographic product $G[H]$ of two graphs $G$ and $H$ is obtained from $G$ by replacing each vertex with a copy of $H$ and adding all edges between any pair of copies corresponding to adjacent vertices of $G$. We generalize the lexicographic product such that we replace each vertex of $G$ with arbitrary graph on the same number of vertices. We present sufficient and necessary conditions for traceability, hamiltonicity and hamiltonian connectivity of $G[H]$ if $G$ is a path.
期刊介绍:
The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.