{"title":"Hamiltonian properties in generalized lexicographic products","authors":"Jan Ekstein, Jakub Teska","doi":"10.7151/dmgt.2527","DOIUrl":null,"url":null,"abstract":"The lexicographic product $G[H]$ of two graphs $G$ and $H$ is obtained from $G$ by replacing each vertex with a copy of $H$ and adding all edges between any pair of copies corresponding to adjacent vertices of $G$. We generalize the lexicographic product such that we replace each vertex of $G$ with arbitrary graph on the same number of vertices. We present sufficient and necessary conditions for traceability, hamiltonicity and hamiltonian connectivity of $G[H]$ if $G$ is a path.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/dmgt.2527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The lexicographic product $G[H]$ of two graphs $G$ and $H$ is obtained from $G$ by replacing each vertex with a copy of $H$ and adding all edges between any pair of copies corresponding to adjacent vertices of $G$. We generalize the lexicographic product such that we replace each vertex of $G$ with arbitrary graph on the same number of vertices. We present sufficient and necessary conditions for traceability, hamiltonicity and hamiltonian connectivity of $G[H]$ if $G$ is a path.