Rapid inactivation of human respiratory RNA viruses by deep ultraviolet irradiation from light-emitting diodes on a high-temperature-annealed AlN/Sapphire template

IF 15.3 1区 物理与天体物理 Q1 OPTICS
Ke Jiang, Simeng Liang, Xiaojuan Sun, Jianwei Ben, Liang Qu, Shanli Zhang, Yang Chen, Yucheng Zheng, Ke Lan, Dabing Li, Ke Xu
{"title":"Rapid inactivation of human respiratory RNA viruses by deep ultraviolet irradiation from light-emitting diodes on a high-temperature-annealed AlN/Sapphire template","authors":"Ke Jiang, Simeng Liang, Xiaojuan Sun, Jianwei Ben, Liang Qu, Shanli Zhang, Yang Chen, Yucheng Zheng, Ke Lan, Dabing Li, Ke Xu","doi":"10.29026/oea.2023.230004","DOIUrl":null,"url":null,"abstract":"Efficient and eco-friendly disinfection of air-borne human respiratory RNA viruses is pursued in both public environment and portable usage. The AlGaN-based deep ultraviolet (DUV) light-emission diode (LED) has high practical potentials because of its advantages of variable wavelength, rapid sterilization, environmental protection, and miniaturization. Therefore, whether the emission wavelength has effects on the disinfection as well as whether the device is feasible to sterilize various respiratory RNA viruses under portable conditions is crucial. Here, we fabricate AlGaN-based DUV LEDs with different wavelength on high-temperature-annealed (HTA) AlN/Sapphire templates and investigate the inactivation effects for several respiratory RNA viruses. The AlN/AlGaN superlattices are employed between the template and upper n-AlGaN to release the strong compressive stress (SCS), improving the crystal quality and interface roughness. DUV LEDs with the wavelength of 256, 265, and 278 nm, corresponding to the light output power of 6.8, 9.6, and 12.5 mW, are realized, among which the 256 nm-LED shows the most potent inactivation effect in human respiratory RNA viruses, including SARS-CoV-2, influenza A virus (IAV), and human parainfluenza virus (HPIV), at a similar light power density (LPD) of ~0.8 mW/cm<sup>2</sup> for 10 s. These results will contribute to the advanced DUV LED application of disinfecting viruses with high potency and broad spectrum in a portable and eco-friendly use.","PeriodicalId":19611,"journal":{"name":"Opto-Electronic Advances","volume":"27 1","pages":"0"},"PeriodicalIF":15.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opto-Electronic Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29026/oea.2023.230004","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

Abstract

Efficient and eco-friendly disinfection of air-borne human respiratory RNA viruses is pursued in both public environment and portable usage. The AlGaN-based deep ultraviolet (DUV) light-emission diode (LED) has high practical potentials because of its advantages of variable wavelength, rapid sterilization, environmental protection, and miniaturization. Therefore, whether the emission wavelength has effects on the disinfection as well as whether the device is feasible to sterilize various respiratory RNA viruses under portable conditions is crucial. Here, we fabricate AlGaN-based DUV LEDs with different wavelength on high-temperature-annealed (HTA) AlN/Sapphire templates and investigate the inactivation effects for several respiratory RNA viruses. The AlN/AlGaN superlattices are employed between the template and upper n-AlGaN to release the strong compressive stress (SCS), improving the crystal quality and interface roughness. DUV LEDs with the wavelength of 256, 265, and 278 nm, corresponding to the light output power of 6.8, 9.6, and 12.5 mW, are realized, among which the 256 nm-LED shows the most potent inactivation effect in human respiratory RNA viruses, including SARS-CoV-2, influenza A virus (IAV), and human parainfluenza virus (HPIV), at a similar light power density (LPD) of ~0.8 mW/cm2 for 10 s. These results will contribute to the advanced DUV LED application of disinfecting viruses with high potency and broad spectrum in a portable and eco-friendly use.
发光二极管在高温退火AlN/蓝宝石模板上深紫外辐射快速灭活人呼吸道RNA病毒
在公共环境和便携式使用中,追求空气传播的人类呼吸道RNA病毒的高效环保消毒。藻类基深紫外(DUV)发光二极管(LED)具有波长可变、快速杀菌、环保、小型化等优点,具有很高的应用潜力。因此,发射波长是否对消毒有影响,以及该装置在便携式条件下是否可行对各种呼吸道RNA病毒进行消毒至关重要。本文在高温退火(HTA) AlN/Sapphire模板上制备了不同波长的algan基DUV led,并研究了其对几种呼吸道RNA病毒的灭活效果。在模板和上部n-AlGaN之间采用AlN/AlGaN超晶格来释放强压应力(SCS),提高了晶体质量和界面粗糙度。实现了波长为256、265和278 nm的DUV led,对应的光输出功率分别为6.8、9.6和12.5 mW,其中256 nm的led对SARS-CoV-2、甲型流感病毒(IAV)和人类副流感病毒(HPIV)等人类呼吸道RNA病毒的灭活效果最好,光功率密度(LPD)为~0.8 mW/cm2,灭活时间为10 s。这些结果将有助于先进的DUV LED在便携式和环保用途中高效广谱消毒病毒的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.30
自引率
7.10%
发文量
128
期刊介绍: Opto-Electronic Advances (OEA) is a distinguished scientific journal that has made significant strides since its inception in March 2018. Here's a collated summary of its key features and accomplishments: Impact Factor and Ranking: OEA boasts an impressive Impact Factor of 14.1, which positions it within the Q1 quartiles of the Optics category. This high ranking indicates that the journal is among the top 25% of its field in terms of citation impact. Open Access and Peer Review: As an open access journal, OEA ensures that research findings are freely available to the global scientific community, promoting wider dissemination and collaboration. It upholds rigorous academic standards through a peer review process, ensuring the quality and integrity of the published research. Database Indexing: OEA's content is indexed in several prestigious databases, including the Science Citation Index (SCI), Engineering Index (EI), Scopus, Chemical Abstracts (CA), and the Index to Chinese Periodical Articles (ICI). This broad indexing facilitates easy access to the journal's articles by researchers worldwide. Scope and Purpose: OEA is committed to serving as a platform for the exchange of knowledge through the publication of high-quality empirical and theoretical research papers. It covers a wide range of topics within the broad area of optics, photonics, and optoelectronics, catering to researchers, academicians, professionals, practitioners, and students alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信