Metrics of constant negative scalar-Weyl curvature

IF 0.6 3区 数学 Q3 MATHEMATICS
Giovanni Catino
{"title":"Metrics of constant negative scalar-Weyl curvature","authors":"Giovanni Catino","doi":"10.4310/mrl.2023.v30.n2.a2","DOIUrl":null,"url":null,"abstract":"Extending Aubin's construction of metrics with constant negative scalar curvature, we prove that every $n$-dimensional closed manifold admits a Riemannian metric with constant negative scalar-Weyl curvature, that is $R+t|W|, t\\in\\mathbb{R}$. In particular, there are no topological obstructions for metrics with $\\varepsilon$-pinched Weyl curvature and negative scalar curvature.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"70 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n2.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Extending Aubin's construction of metrics with constant negative scalar curvature, we prove that every $n$-dimensional closed manifold admits a Riemannian metric with constant negative scalar-Weyl curvature, that is $R+t|W|, t\in\mathbb{R}$. In particular, there are no topological obstructions for metrics with $\varepsilon$-pinched Weyl curvature and negative scalar curvature.
常数负标量-魏尔曲率的度量
推广了Aubin关于常负标量曲率度量的构造,证明了每$n$维闭流形都存在一个常负标量- weyl曲率的黎曼度量,即$R+t|W|, t\in\mathbb{R}$。特别是,对于具有缩紧Weyl曲率和负标量曲率的度量,不存在拓扑障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信