Complex Ball Quotients and New Symplectic $4$-manifolds with Nonnegative Signatures

Pub Date : 2023-01-01 DOI:10.11650/tjm/230905
Anar Akhmedov, Sümeyra Sakallı, Sai-Kee Yeung
{"title":"Complex Ball Quotients and New Symplectic $4$-manifolds with Nonnegative Signatures","authors":"Anar Akhmedov, Sümeyra Sakallı, Sai-Kee Yeung","doi":"10.11650/tjm/230905","DOIUrl":null,"url":null,"abstract":"We construct new symplectic $4$-manifolds with non-negative signatures and with the smallest Euler characteristics, using fake projective planes, Cartwright–Steger surfaces and their normal covers and product symplectic $4$-manifolds $\\Sigma_{g} \\times \\Sigma_{h}$, where $g \\geq 1$ and $h \\geq 0$, along with exotic symplectic $4$-manifolds constructed in [7, 12]. In particular, our constructions yield to (1) infinitely many irreducible symplectic and infinitely many non-symplectic $4$-manifolds that are homeomorphic but not diffeomorphic to $(2n-1) \\mathbb{CP}^{2} \\# (2n-1) \\overline{\\mathbb{CP}}^{2}$ for each integer $n \\geq 9$, (2) infinite families of simply connected irreducible nonspin symplectic and such infinite families of non-symplectic $4$-manifolds that have the smallest Euler characteristics among the all known simply connected $4$-manifolds with positive signatures and with more than one smooth structure. We also construct a complex surface with positive signature from the Hirzebruch's line-arrangement surfaces, which is a ball quotient.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/tjm/230905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We construct new symplectic $4$-manifolds with non-negative signatures and with the smallest Euler characteristics, using fake projective planes, Cartwright–Steger surfaces and their normal covers and product symplectic $4$-manifolds $\Sigma_{g} \times \Sigma_{h}$, where $g \geq 1$ and $h \geq 0$, along with exotic symplectic $4$-manifolds constructed in [7, 12]. In particular, our constructions yield to (1) infinitely many irreducible symplectic and infinitely many non-symplectic $4$-manifolds that are homeomorphic but not diffeomorphic to $(2n-1) \mathbb{CP}^{2} \# (2n-1) \overline{\mathbb{CP}}^{2}$ for each integer $n \geq 9$, (2) infinite families of simply connected irreducible nonspin symplectic and such infinite families of non-symplectic $4$-manifolds that have the smallest Euler characteristics among the all known simply connected $4$-manifolds with positive signatures and with more than one smooth structure. We also construct a complex surface with positive signature from the Hirzebruch's line-arrangement surfaces, which is a ball quotient.
分享
查看原文
复球商与非负签名的新辛$4$流形
我们构造新的辛函数 $4$-具有最小欧拉特征的非负签名流形,使用假投影平面,Cartwright-Steger曲面及其法向覆盖和积辛 $4$-流形 $\Sigma_{g} \times \Sigma_{h}$,其中 $g \geq 1$ 和 $h \geq 0$,以及奇异辛函数 $4$-在[7,12]中构造的流形。特别地,我们的构造产生了(1)无限多不可约辛和无限多非辛 $4$-同胚但不微分同胚的流形 $(2n-1) \mathbb{CP}^{2} \# (2n-1) \overline{\mathbb{CP}}^{2}$ 对于每个整数 $n \geq 9$,(2)单连通不可约非自旋辛的无限族及其非辛的无限族 $4$-在所有已知的单连通流形中欧拉特性最小的流形 $4$-具有正特征和多个光滑结构的流形。我们还从Hirzebruch的线排列曲面构造了一个具有正签名的复曲面,这是一个球商。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信