Narinder Singh, Ilenia Farina, Antonella Petrillo, Francesco Colangelo, Fabio De Felice
{"title":"Carbon capture, sequestration, and usage for clean and green environment: challenges and opportunities","authors":"Narinder Singh, Ilenia Farina, Antonella Petrillo, Francesco Colangelo, Fabio De Felice","doi":"10.1080/19397038.2023.2256379","DOIUrl":null,"url":null,"abstract":"The capture of carbon and sequestration (CCS) activity is considered strategic in the context of world energy policy. In fact, CO2 emissions from fossil/conventional-fuel-fired power plants can be lowered by using CCS on the same. Various other methods have been developed to date to capture the carbon and store it. This article focuses on the various carbon capture technologies and the storage technologies such as pre-combustion, post-combustion, oxyfuel technology, and direct air capture (DAC) technology, including their subparts, along with the factors affecting the carbon capture technologies. The aim of the present study is to develop an overview of carbon dioxide removal (CDR) technologies and CO2 sequestration, including a vast coverage of the various factors that have a huge impact on CCS. It emerged that the existing technologies that deal with CO2 sequestration and capture are being used at large scale to produce derivatives including chemicals, polymers, building materials, and various other products. The newest technology that has been seen creating a huge effect is direct air capture, and commercial use of such technologies has been seen. Future potential application areas have been realised in this review work. In addition, this article explores policy recommendations for the future.","PeriodicalId":14400,"journal":{"name":"International Journal of Sustainable Engineering","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19397038.2023.2256379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The capture of carbon and sequestration (CCS) activity is considered strategic in the context of world energy policy. In fact, CO2 emissions from fossil/conventional-fuel-fired power plants can be lowered by using CCS on the same. Various other methods have been developed to date to capture the carbon and store it. This article focuses on the various carbon capture technologies and the storage technologies such as pre-combustion, post-combustion, oxyfuel technology, and direct air capture (DAC) technology, including their subparts, along with the factors affecting the carbon capture technologies. The aim of the present study is to develop an overview of carbon dioxide removal (CDR) technologies and CO2 sequestration, including a vast coverage of the various factors that have a huge impact on CCS. It emerged that the existing technologies that deal with CO2 sequestration and capture are being used at large scale to produce derivatives including chemicals, polymers, building materials, and various other products. The newest technology that has been seen creating a huge effect is direct air capture, and commercial use of such technologies has been seen. Future potential application areas have been realised in this review work. In addition, this article explores policy recommendations for the future.