A two-category of Hamiltonian manifolds, and a (1+1+1) field theory

IF 1.2 2区 数学 Q1 MATHEMATICS
Guillem Cazassus
{"title":"A two-category of Hamiltonian manifolds, and a (1+1+1) field theory","authors":"Guillem Cazassus","doi":"10.1512/iumj.2023.72.9512","DOIUrl":null,"url":null,"abstract":"We define an extended field theory in dimensions $1+1+1$, that takes the form of a `quasi 2-functor' with values in a strict 2-category $\\widehat{\\mathcal{H}am}$, defined as the `completion of a partial 2-category' $\\mathcal{H}am$, notions which we define. Our construction extends Wehrheim and Woodward's Floer Field theory, and is inspired by Manolescu and Woodward's construction of symplectic instanton homology. It can be seen, in dimensions $1+1$, as a real analog of a construction by Moore and Tachikawa. ","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":"76 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9512","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We define an extended field theory in dimensions $1+1+1$, that takes the form of a `quasi 2-functor' with values in a strict 2-category $\widehat{\mathcal{H}am}$, defined as the `completion of a partial 2-category' $\mathcal{H}am$, notions which we define. Our construction extends Wehrheim and Woodward's Floer Field theory, and is inspired by Manolescu and Woodward's construction of symplectic instanton homology. It can be seen, in dimensions $1+1$, as a real analog of a construction by Moore and Tachikawa.
哈密顿流形的两类,以及一个(1+1+1)场论
我们在维度$1+1+1$中定义了一个扩展场论,它采用具有严格2范畴$\widehat{\mathcal{H}am}$值的“拟2函子”的形式,定义为我们定义的“部分2范畴$\mathcal{H}am$的补全”。我们的构造扩展了Wehrheim和Woodward的花场理论,并受到Manolescu和Woodward关于辛瞬子同调的构造的启发。我们可以看到,在维度$1+1$中,它是摩尔和立川构造的真实模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信