{"title":"Design of symbiosis 3D framework interface for long-life lithium metal batteries","authors":"Ziping Wang, Mingyang Xin, Shuyuan Xie, Hao Sun, Shuang Yu, Yiqi Gong, Haiming Xie, Yulong Liu","doi":"10.1016/j.est.2023.107823","DOIUrl":null,"url":null,"abstract":"The application of lithium metal in batteries is constrained due to high nucleation potential and uneven deposition. Here, we reported that cellulose film protects lithium by a facile and low-cost method, suitable for high-voltage cathodes in carbonate electrolytes. The cellulose layer can well accommodate the deposited lithium and eliminate volume change in the lithium depositing/stripping processes. Cellulose layer nanofibers are transferred to the surface of lithium foil to form a compact layer of cellulose and lithium metal symbiosis. This can homogenize Li-ions distribution and apply as the lithium deposition sites, decreasing nucleation over potential. The symbiotic layer on the surface of lithium foil has the fast Li+ transmission performance of Li2CO3 and LiF, good electronic insulator capability and strong affinity for Li+, respectively. As a result, Li symmetric cells using the cellulose protected Li exhibited excellent cycling stability over 220 h at 3 mA cm−2. The full cells assembled with a NMC811 cathode (loading of 2.68 mA h cm−2) exhibited high-rate capability and excellent cycle stability, with capacity retention of 71.2 % at 400 cycles.","PeriodicalId":94331,"journal":{"name":"Journal of energy storage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.est.2023.107823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The application of lithium metal in batteries is constrained due to high nucleation potential and uneven deposition. Here, we reported that cellulose film protects lithium by a facile and low-cost method, suitable for high-voltage cathodes in carbonate electrolytes. The cellulose layer can well accommodate the deposited lithium and eliminate volume change in the lithium depositing/stripping processes. Cellulose layer nanofibers are transferred to the surface of lithium foil to form a compact layer of cellulose and lithium metal symbiosis. This can homogenize Li-ions distribution and apply as the lithium deposition sites, decreasing nucleation over potential. The symbiotic layer on the surface of lithium foil has the fast Li+ transmission performance of Li2CO3 and LiF, good electronic insulator capability and strong affinity for Li+, respectively. As a result, Li symmetric cells using the cellulose protected Li exhibited excellent cycling stability over 220 h at 3 mA cm−2. The full cells assembled with a NMC811 cathode (loading of 2.68 mA h cm−2) exhibited high-rate capability and excellent cycle stability, with capacity retention of 71.2 % at 400 cycles.
锂金属在电池中的应用受到高成核电位和不均匀沉积的制约。在这里,我们报道了纤维素膜以一种简单和低成本的方法保护锂,适用于碳酸盐电解质中的高压阴极。纤维素层可以很好地容纳沉积的锂,并消除锂沉积/剥离过程中的体积变化。纤维素层纳米纤维转移到锂箔表面,形成致密的纤维素层与金属锂共生。这可以均匀化锂离子的分布,并作为锂沉积的位置,减少超电位成核。锂箔表面的共生层分别具有Li2CO3和LiF对Li+的快速传输性能、良好的电子绝缘体性能和对Li+的强亲和力。结果表明,使用纤维素保护的锂对称电池在3ma cm−2下的220小时内表现出优异的循环稳定性。用NMC811阴极(负载为2.68 mA h cm−2)组装的完整电池具有高倍率性能和优异的循环稳定性,在400次循环时容量保持率为71.2%。