Thays G. A. Duarte, Srinivasan Arunachalam, Arthriya Subgranon, Seymour M. J. Spence
{"title":"Uncertainty Quantification and Simulation of Wind-Tunnel-Informed Stochastic Wind Loads","authors":"Thays G. A. Duarte, Srinivasan Arunachalam, Arthriya Subgranon, Seymour M. J. Spence","doi":"10.3390/wind3030022","DOIUrl":null,"url":null,"abstract":"The simulation of stochastic wind loads is necessary for many applications in wind engineering. The proper-orthogonal-decomposition-(POD)-based spectral representation method is a popular approach used for this purpose, due to its computational efficiency. For general wind directions and building configurations, the data-informed POD-based stochastic model is an alternative that uses wind-tunnel-smoothed auto- and cross-spectral density as input, to calibrate the eigenvalues and eigenvectors of the target load process. Even though this method is straightforward and presents advantages, compared to using empirical target auto- and cross-spectral density, the limitations and errors associated with this model have not been investigated. To this end, an extensive experimental study on a rectangular building model considering multiple wind directions and configurations was conducted, to allow the quantification of uncertainty related to the use of short-duration wind tunnel records for calibration and validation of the data-informed POD-based stochastic model. The results demonstrate that the data-informed model can efficiently simulate stochastic wind loads with negligible model errors, while the errors associated with calibration to short-duration wind tunnel data can be important.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"176 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wind3030022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The simulation of stochastic wind loads is necessary for many applications in wind engineering. The proper-orthogonal-decomposition-(POD)-based spectral representation method is a popular approach used for this purpose, due to its computational efficiency. For general wind directions and building configurations, the data-informed POD-based stochastic model is an alternative that uses wind-tunnel-smoothed auto- and cross-spectral density as input, to calibrate the eigenvalues and eigenvectors of the target load process. Even though this method is straightforward and presents advantages, compared to using empirical target auto- and cross-spectral density, the limitations and errors associated with this model have not been investigated. To this end, an extensive experimental study on a rectangular building model considering multiple wind directions and configurations was conducted, to allow the quantification of uncertainty related to the use of short-duration wind tunnel records for calibration and validation of the data-informed POD-based stochastic model. The results demonstrate that the data-informed model can efficiently simulate stochastic wind loads with negligible model errors, while the errors associated with calibration to short-duration wind tunnel data can be important.
期刊介绍:
The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted.
The main theme of the Journal is the wind effects on structures. Areas covered by the journal include:
Wind loads and structural response,
Bluff-body aerodynamics,
Computational method,
Wind tunnel modeling,
Local wind environment,
Codes and regulations,
Wind effects on large scale structures.