Tarif Ahmed, Jin Sun Cha, Chan-gyu Park, Ho Kyong Shon, Dong Suk Han, Hyunwoong Park
{"title":"Activated Carbon-Embedded Reduced Graphene Oxide Electrodes for Capacitive Desalination","authors":"Tarif Ahmed, Jin Sun Cha, Chan-gyu Park, Ho Kyong Shon, Dong Suk Han, Hyunwoong Park","doi":"10.33961/jecst.2023.00066","DOIUrl":null,"url":null,"abstract":"Capacitive deionization of saline water is one of the most promising water purification technologies due to its high energy efficiency and cost-effectiveness. This study synthesizes porous carbon composites composed of reduced graphene oxide (rGO) and activated carbon (AC) with various rGO/AC ratios using a facile chemical method. Surface characterization of the rGO/AC composites shows a successful chemical reduction of GO to rGO and incorporation of AC into rGO. The optimized rGO/AC composite electrode exhibits a specific capacitance of ~243 F g<sup>−1</sup> in a 1 M NaCl solution. The galvanostatic charging-discharging test shows excellent reversible cycles, with a slight shortening in the cycle time from the ~260<sup>th</sup> to the 530<sup>th</sup> cycle. Various monovalent sodium salts (NaF, NaCl, NaBr, and NaI) and chloride salts (LiCl, NaCl, KCl, and CsCl) are deionized with the rGO/AC electrode pairs at a cell voltage of 1.3 V. Among them, NaI shows the highest specific adsorption capacity of ~22.2 mg g<sup>−1</sup>. Detailed surface characterization and electrochemical analyses are conducted.","PeriodicalId":15542,"journal":{"name":"Journal of electrochemical science and technology","volume":"7 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electrochemical science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33961/jecst.2023.00066","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Capacitive deionization of saline water is one of the most promising water purification technologies due to its high energy efficiency and cost-effectiveness. This study synthesizes porous carbon composites composed of reduced graphene oxide (rGO) and activated carbon (AC) with various rGO/AC ratios using a facile chemical method. Surface characterization of the rGO/AC composites shows a successful chemical reduction of GO to rGO and incorporation of AC into rGO. The optimized rGO/AC composite electrode exhibits a specific capacitance of ~243 F g−1 in a 1 M NaCl solution. The galvanostatic charging-discharging test shows excellent reversible cycles, with a slight shortening in the cycle time from the ~260th to the 530th cycle. Various monovalent sodium salts (NaF, NaCl, NaBr, and NaI) and chloride salts (LiCl, NaCl, KCl, and CsCl) are deionized with the rGO/AC electrode pairs at a cell voltage of 1.3 V. Among them, NaI shows the highest specific adsorption capacity of ~22.2 mg g−1. Detailed surface characterization and electrochemical analyses are conducted.