On the 𝑝-adic zeros of the Tribonacci sequence

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yuri Bilu, Florian Luca, Joris Nieuwveld, Joël Ouaknine, James Worrell
{"title":"On the 𝑝-adic zeros of the Tribonacci sequence","authors":"Yuri Bilu, Florian Luca, Joris Nieuwveld, Joël Ouaknine, James Worrell","doi":"10.1090/mcom/3893","DOIUrl":null,"url":null,"abstract":"Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper T Subscript n Baseline right-parenthesis Subscript n element-of double-struck upper Z\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(T_n)_{n\\in {\\mathbb Z}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the Tribonacci sequence and for a prime <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and an integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu Subscript p Baseline left-parenthesis m right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>ν<!-- ν --></mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\nu _p(m)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the exponent of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the factorization of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p equals 2\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Marques and Lengyel found some formulas relating <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu Subscript p Baseline left-parenthesis upper T Subscript n Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>ν<!-- ν --></mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\nu _p(T_n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu Subscript p Baseline left-parenthesis f left-parenthesis n right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>ν<!-- ν --></mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\nu _p(f(n))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is some linear function of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (which might be constant) according to the residue class of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> modulo <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"32\"> <mml:semantics> <mml:mn>32</mml:mn> <mml:annotation encoding=\"application/x-tex\">32</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and asked if similar formulas exist for other primes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper, we give an algorithm which tests whether for a given prime <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such formulas exist or not. When they exist, our algorithm computes these formulas. Some numerical results are presented.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Let ( T n ) n Z (T_n)_{n\in {\mathbb Z}} be the Tribonacci sequence and for a prime p p and an integer m m let ν p ( m ) \nu _p(m) be the exponent of p p in the factorization of m m . For p = 2 p=2 Marques and Lengyel found some formulas relating ν p ( T n ) \nu _p(T_n) with ν p ( f ( n ) ) \nu _p(f(n)) where f ( n ) f(n) is some linear function of n n (which might be constant) according to the residue class of n n modulo 32 32 and asked if similar formulas exist for other primes p p . In this paper, we give an algorithm which tests whether for a given prime p p such formulas exist or not. When they exist, our algorithm computes these formulas. Some numerical results are presented.
在Tribonacci数列的𝑝-adic零点上
设(tn) n∈Z (T_n)_{n\in {\mathbb Z}}为Tribonacci序列对于素数p p和整数m m,设ν p(m) \nu _p(m)为p p在m m分解中的指数。对于p=2 p=2, Marques和Lengyel发现了一些关于ν p(tn) \nu _p(T_n)与ν p(f(n)) \nu _p(f(n))的公式,其中f(n) f(n)是n n的某个线性函数(可能是常数)根据n n模32 32的剩余类,并询问是否存在其他素数p p的类似公式。在本文中,我们给出了一个算法来检验对于给定素数p p是否存在这样的公式。当它们存在时,我们的算法计算这些公式。给出了一些数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信