Muhammad Mohamed Amin, Nur Syamimi Zainal Adelin, Abu Bakar Sulong, Norhamidi Muhamad
{"title":"Rheological Analysis of Zirconia-Hydroxyapatite with Bi-Modal System of Binders; Low-Density Polyethylene and Palm Stearin","authors":"Muhammad Mohamed Amin, Nur Syamimi Zainal Adelin, Abu Bakar Sulong, Norhamidi Muhamad","doi":"10.30880/ijie.2023.15.05.019","DOIUrl":null,"url":null,"abstract":"The two component micro-powder injection molding (2C-μPIM) process has evolved from μPIM process because of the increasing demand for multi-functional micro-components applications. In this research work, the selected materials to fabricate micro-sized bi-material parts are zirconia (ZrO2) and hydroxyapatite (HA). ZrO2 is chosen for structural integrity and bio-inert, while HA is mainly chosen for bio-active properties. The reason of employing the multi-component binders is to ensure the flowability of the feedstock. Feedstock rheological characteristics needs to be carefully investigated to avoid any undesirable and inhomogeneous mixture between powder and binder. A common binder system which is comprised of palm stearin and low-density polyethylene (LDPE) were mixed with individual ZrO2 and HA powder particles to prepare for ZrO2 and HA feedstocks. Typically, the feedstocks were obtained ZrO2 and HA powders independently with a binder ratio of 60 wt.% of palm stearin and 40wt.% low-density polyethylene (LDPE). The mixing was carried out in Brabender mixer. Before mixing, critical powder volume percentage (CPVP) analysis was carried out to determine the optimal powder loadings required to prepare the ZrO2 and HA feedstocks. In this research work, the obtained CPVP of ZrO2 and HA powders were 47.0 and 59.0 vol.%, respectively. Based on CPVP analysis, six feedstocks with optimal powder loadings of 43, 44 and 45 vol.% for ZrO2 and 54, 55 and 56 vol.% for HA were prepared. The rheological analysis involving viscosity, shear rate, flow behavior index, activation energy and moldability index was investigated using capillary rheometer. Based on the obtained rheology result, it shows that the overall shear rate and viscosity are within the 2C-μPIM process recommended range. All tested composition shows pseudoplastic behavior. The results of the study found that ZrO2 and HA with optimal powder loadings of 55 vol.% and 44 vol.% have good rheological properties compared to feedstocks with other powder loadings. This is because both materials meet the criteria of good rheological properties which are low viscosity, high shear rate, flow behavior index less than one, low activation energy and high moldability index.","PeriodicalId":14189,"journal":{"name":"International Journal of Integrated Engineering","volume":"69 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/ijie.2023.15.05.019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The two component micro-powder injection molding (2C-μPIM) process has evolved from μPIM process because of the increasing demand for multi-functional micro-components applications. In this research work, the selected materials to fabricate micro-sized bi-material parts are zirconia (ZrO2) and hydroxyapatite (HA). ZrO2 is chosen for structural integrity and bio-inert, while HA is mainly chosen for bio-active properties. The reason of employing the multi-component binders is to ensure the flowability of the feedstock. Feedstock rheological characteristics needs to be carefully investigated to avoid any undesirable and inhomogeneous mixture between powder and binder. A common binder system which is comprised of palm stearin and low-density polyethylene (LDPE) were mixed with individual ZrO2 and HA powder particles to prepare for ZrO2 and HA feedstocks. Typically, the feedstocks were obtained ZrO2 and HA powders independently with a binder ratio of 60 wt.% of palm stearin and 40wt.% low-density polyethylene (LDPE). The mixing was carried out in Brabender mixer. Before mixing, critical powder volume percentage (CPVP) analysis was carried out to determine the optimal powder loadings required to prepare the ZrO2 and HA feedstocks. In this research work, the obtained CPVP of ZrO2 and HA powders were 47.0 and 59.0 vol.%, respectively. Based on CPVP analysis, six feedstocks with optimal powder loadings of 43, 44 and 45 vol.% for ZrO2 and 54, 55 and 56 vol.% for HA were prepared. The rheological analysis involving viscosity, shear rate, flow behavior index, activation energy and moldability index was investigated using capillary rheometer. Based on the obtained rheology result, it shows that the overall shear rate and viscosity are within the 2C-μPIM process recommended range. All tested composition shows pseudoplastic behavior. The results of the study found that ZrO2 and HA with optimal powder loadings of 55 vol.% and 44 vol.% have good rheological properties compared to feedstocks with other powder loadings. This is because both materials meet the criteria of good rheological properties which are low viscosity, high shear rate, flow behavior index less than one, low activation energy and high moldability index.
期刊介绍:
The International Journal of Integrated Engineering (IJIE) is a single blind peer reviewed journal which publishes 3 times a year since 2009. The journal is dedicated to various issues focusing on 3 different fields which are:- Civil and Environmental Engineering. Original contributions for civil and environmental engineering related practices will be publishing under this category and as the nucleus of the journal contents. The journal publishes a wide range of research and application papers which describe laboratory and numerical investigations or report on full scale projects. Electrical and Electronic Engineering. It stands as a international medium for the publication of original papers concerned with the electrical and electronic engineering. The journal aims to present to the international community important results of work in this field, whether in the form of research, development, application or design. Mechanical, Materials and Manufacturing Engineering. It is a platform for the publication and dissemination of original work which contributes to the understanding of the main disciplines underpinning the mechanical, materials and manufacturing engineering. Original contributions giving insight into engineering practices related to mechanical, materials and manufacturing engineering form the core of the journal contents.