Assisted Car Platooning and Congestion Control at Road Intersections

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY
Nor Fadzilah Abdullah, Yu Chor Kiat, Yee Yen Sing, Rosdiadee Nordin
{"title":"Assisted Car Platooning and Congestion Control at Road Intersections","authors":"Nor Fadzilah Abdullah, Yu Chor Kiat, Yee Yen Sing, Rosdiadee Nordin","doi":"10.30880/ijie.2023.15.05.030","DOIUrl":null,"url":null,"abstract":"Enhancing road safety and traffic efficiency are the important aspects and goals that automakers and researchers trying to achieve in recent years. The autonomous vehicle technology has been identified as a solution to achieve these goals. However, the adoption of fully autonomous vehicles in the current market is still in the very early stages of deployment. The objective of this paper is to develop a Cooperative Adaptive Cruise Control (CACC) model at a road intersection using platooning car-following mobility models, object detection at traffic light units, and Vehicle-to-Everything (V2X) communication through vehicular ad hoc networks (VANETs). The mobility model considers traffic simulation using the SUMO-PLEXE-VEINS platforms integration. Next, a prototype of an assisted car platooning system consisting of roadside unit (RSU) and on-board units (OBU) is developed using artificial intelligence (AI)-based smart traffic light for obstruction detection at an intersection and modified remote-control cars with V2X communication equipped with in-vehicle alert notification, respectively. The results show accurate detection of obstruction by the proposed assisted car platooning system, and an optimised smart traffic light operation that can reduce congestion and fuel consumption, improve traffic flow, and enhance road safety. The findings from this paper can be used as a baseline for the framework of CACC implementation by legislators, policymakers, infrastructure providers, and vehicle manufacturers.","PeriodicalId":14189,"journal":{"name":"International Journal of Integrated Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/ijie.2023.15.05.030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing road safety and traffic efficiency are the important aspects and goals that automakers and researchers trying to achieve in recent years. The autonomous vehicle technology has been identified as a solution to achieve these goals. However, the adoption of fully autonomous vehicles in the current market is still in the very early stages of deployment. The objective of this paper is to develop a Cooperative Adaptive Cruise Control (CACC) model at a road intersection using platooning car-following mobility models, object detection at traffic light units, and Vehicle-to-Everything (V2X) communication through vehicular ad hoc networks (VANETs). The mobility model considers traffic simulation using the SUMO-PLEXE-VEINS platforms integration. Next, a prototype of an assisted car platooning system consisting of roadside unit (RSU) and on-board units (OBU) is developed using artificial intelligence (AI)-based smart traffic light for obstruction detection at an intersection and modified remote-control cars with V2X communication equipped with in-vehicle alert notification, respectively. The results show accurate detection of obstruction by the proposed assisted car platooning system, and an optimised smart traffic light operation that can reduce congestion and fuel consumption, improve traffic flow, and enhance road safety. The findings from this paper can be used as a baseline for the framework of CACC implementation by legislators, policymakers, infrastructure providers, and vehicle manufacturers.
交叉口辅助车辆排队与拥堵控制
提高道路安全和交通效率是近年来汽车制造商和研究人员努力实现的重要方面和目标。自动驾驶汽车技术已被确定为实现这些目标的解决方案。然而,目前市场上采用全自动驾驶汽车仍处于非常早期的部署阶段。本文的目标是在十字路口开发一种合作自适应巡航控制(CACC)模型,该模型使用队列车辆跟随移动模型、红绿灯单元的目标检测以及通过车辆自组织网络(VANETs)进行的车对一切(V2X)通信。移动性模型考虑了使用sumo - plexe - vein平台集成的交通仿真。接下来,利用基于人工智能(AI)的交叉口障碍物检测智能交通灯和配备车内警报通知的V2X通信的改装遥控汽车,分别开发了由路边单元(RSU)和车载单元(OBU)组成的辅助汽车队列系统原型。结果表明,所提出的辅助车辆队列系统可以准确检测障碍物,优化的智能交通灯操作可以减少拥堵和燃油消耗,改善交通流量,提高道路安全。本文的研究结果可以作为立法者、政策制定者、基础设施提供商和汽车制造商实施ccc框架的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Integrated Engineering
International Journal of Integrated Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
0.00%
发文量
57
期刊介绍: The International Journal of Integrated Engineering (IJIE) is a single blind peer reviewed journal which publishes 3 times a year since 2009. The journal is dedicated to various issues focusing on 3 different fields which are:- Civil and Environmental Engineering. Original contributions for civil and environmental engineering related practices will be publishing under this category and as the nucleus of the journal contents. The journal publishes a wide range of research and application papers which describe laboratory and numerical investigations or report on full scale projects. Electrical and Electronic Engineering. It stands as a international medium for the publication of original papers concerned with the electrical and electronic engineering. The journal aims to present to the international community important results of work in this field, whether in the form of research, development, application or design. Mechanical, Materials and Manufacturing Engineering. It is a platform for the publication and dissemination of original work which contributes to the understanding of the main disciplines underpinning the mechanical, materials and manufacturing engineering. Original contributions giving insight into engineering practices related to mechanical, materials and manufacturing engineering form the core of the journal contents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信