A Semi-Constructive Approach to the Hyperreal Line

Guillaume Massas
{"title":"A Semi-Constructive Approach to the Hyperreal Line","authors":"Guillaume Massas","doi":"10.26686/ajl.v20i3.8254","DOIUrl":null,"url":null,"abstract":"Using an alternative to Tarskian semantics for first-order logic known as possibility semantics, I introduce an approach to nonstandard analysis that remains within the bounds of semiconstructive mathematics, i.e., does not assume any fragment of the Axiom of Choice beyond the Axiom of Dependent Choices. I define the Fr´echet hyperreal line †R as a possibility structure and show that it shares many fundamental properties of the classical hyperreal line, such as a Transfer Principle and a Saturation Principle. I discuss the technical advantages of †R over some other alternative approaches to nonstandard analysis and argue that it is well-suited to address some of the philosophical and methodological concerns that have been raised against the application of nonstandard methods to ordinary mathematics.","PeriodicalId":367849,"journal":{"name":"The Australasian Journal of Logic","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Australasian Journal of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26686/ajl.v20i3.8254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Using an alternative to Tarskian semantics for first-order logic known as possibility semantics, I introduce an approach to nonstandard analysis that remains within the bounds of semiconstructive mathematics, i.e., does not assume any fragment of the Axiom of Choice beyond the Axiom of Dependent Choices. I define the Fr´echet hyperreal line †R as a possibility structure and show that it shares many fundamental properties of the classical hyperreal line, such as a Transfer Principle and a Saturation Principle. I discuss the technical advantages of †R over some other alternative approaches to nonstandard analysis and argue that it is well-suited to address some of the philosophical and methodological concerns that have been raised against the application of nonstandard methods to ordinary mathematics.
超实线的半构造方法
使用一阶逻辑的塔斯基语义学的替代方法,即可能性语义学,我介绍了一种非标准分析的方法,这种方法仍然在半构造数学的范围内,即不假设依赖选择公理之外的选择公理的任何片段。我定义了Fr ' cheet超实线†R作为一种可能性结构,并证明了它具有经典超实线的许多基本性质,如转移原理和饱和原理。我讨论了†R相对于其他一些非标准分析方法的技术优势,并认为它非常适合解决一些反对将非标准方法应用于普通数学的哲学和方法论问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信