Bilateral estimates of some pseudo-derivatives of the transition probability density of an isotropic $\alpha$-stable stochastic process

IF 1 Q1 MATHEMATICS
M.M. Osypchuk
{"title":"Bilateral estimates of some pseudo-derivatives of the transition probability density of an isotropic $\\alpha$-stable stochastic process","authors":"M.M. Osypchuk","doi":"10.15330/cmp.15.2.381-387","DOIUrl":null,"url":null,"abstract":"In the paper, the transition probability density of an isotropic $\\alpha$-stable stochastic process in a finite dimensional Euclidean space is considered. The results of applying pseudo-differential operators with respect spatial variables to this function are estimated from the both side: above and below. Operators in the consideration are defined by the symbols $|\\lambda|^\\varkappa$ and $\\lambda|\\lambda|^{\\varkappa-1}$, where $\\varkappa$ is some constant. The first operator with negative sign is fractional Laplacian and the second one multiplied by imaginary unit is fractional gradient.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.381-387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In the paper, the transition probability density of an isotropic $\alpha$-stable stochastic process in a finite dimensional Euclidean space is considered. The results of applying pseudo-differential operators with respect spatial variables to this function are estimated from the both side: above and below. Operators in the consideration are defined by the symbols $|\lambda|^\varkappa$ and $\lambda|\lambda|^{\varkappa-1}$, where $\varkappa$ is some constant. The first operator with negative sign is fractional Laplacian and the second one multiplied by imaginary unit is fractional gradient.
各向同性$\ α $稳定随机过程的转移概率密度的一些伪导数的双边估计
本文研究有限维欧几里德空间中各向同性$\alpha$稳定随机过程的转移概率密度。对该函数应用关于空间变量的伪微分算子的结果从上下两方面进行了估计。考虑中的运算符由符号$|\lambda|^\varkappa$和$\lambda|\lambda|^{\varkappa-1}$定义,其中$\varkappa$是某个常数。第一个带负号的算子是分数阶拉普拉斯算子,第二个带虚数单位的算子是分数阶梯度算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信