{"title":"Role of the Equivalence Ratio On Soot Formation in a Perfectly Premixed Turbulent Swirled Flame: A Combined Experimental and Les Study","authors":"Aurora Maffina, Mathieu Roussillo, Philippe Scouflaire, Nasser Darabiha, Denis Veynante, Sebastien Candel, Benedetta Franzelli","doi":"10.1115/1.4063832","DOIUrl":null,"url":null,"abstract":"Abstract The understanding of processes that govern soot production in aero-engines is fundamental for the design of new combustion systems with low environmental impact. Many combustors, more specifically those used in aero-engines, feature rich flame regions typically exploited in the so-called Rich-Quench-Lean technology. Thus, it is important to consider rich turbulent flames operating in the premixed mode. To this purpose, a model scale swirled combustor, called EM2Soot, was designed at the EM2C laboratory to analyze soot production under perfectly premixed rich conditions. In this work, the effect of the equivalence ratio on soot production in this burner is experimentally characterized and numerically simulated. Measurements of Planar Laser Induced Fluorescence of Polycyclic Aromatic Hydrocarbons were performed to examine soot precursors presence, whereas soot volume fraction is measured with Planar Laser Induced Incandescence. Large Eddy Simulations (LES) are carried out using models already established in literature. By considering a range of equivalence ratios, the soot volume fraction from the experiments was found to reach a maximum near 1.8, whereas a lower level of soot volume fraction was measured for lower and for higher equivalence ratios. The large eddy simulations are found to be in qualitative agreement with experimental data in terms of PAHs and soot location. The soot volume fractions fv are notably overestimated with respect to the LII measurements. However, the numerical results correctly retrieve a reduction of soot production for the highest considered equivalence ratio value and can be used to explain the experimental behaviour.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":"22 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063832","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The understanding of processes that govern soot production in aero-engines is fundamental for the design of new combustion systems with low environmental impact. Many combustors, more specifically those used in aero-engines, feature rich flame regions typically exploited in the so-called Rich-Quench-Lean technology. Thus, it is important to consider rich turbulent flames operating in the premixed mode. To this purpose, a model scale swirled combustor, called EM2Soot, was designed at the EM2C laboratory to analyze soot production under perfectly premixed rich conditions. In this work, the effect of the equivalence ratio on soot production in this burner is experimentally characterized and numerically simulated. Measurements of Planar Laser Induced Fluorescence of Polycyclic Aromatic Hydrocarbons were performed to examine soot precursors presence, whereas soot volume fraction is measured with Planar Laser Induced Incandescence. Large Eddy Simulations (LES) are carried out using models already established in literature. By considering a range of equivalence ratios, the soot volume fraction from the experiments was found to reach a maximum near 1.8, whereas a lower level of soot volume fraction was measured for lower and for higher equivalence ratios. The large eddy simulations are found to be in qualitative agreement with experimental data in terms of PAHs and soot location. The soot volume fractions fv are notably overestimated with respect to the LII measurements. However, the numerical results correctly retrieve a reduction of soot production for the highest considered equivalence ratio value and can be used to explain the experimental behaviour.
期刊介绍:
The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.