Hilbert Space Decomposition Properties of Complex Functions and Their Applications

IF 0.6 Q3 MATHEMATICS
Myroslava I. Vovk, Petro Ya. Pukach, Volodymyr M. Dilnyi, Anatolij K. Prykarpatski
{"title":"Hilbert Space Decomposition Properties of Complex Functions and Their Applications","authors":"Myroslava I. Vovk, Petro Ya. Pukach, Volodymyr M. Dilnyi, Anatolij K. Prykarpatski","doi":"10.37256/cm.4420232386","DOIUrl":null,"url":null,"abstract":"We analyzed the classical problem of decomposing the Hilbert space of holomorphic functions, especially their splitting into the product or sum of domain-separated components. For the Bergman space of analytical functions, we obtained a special decomposition satisfying the assigned growth degree properties. Concerning a general Hilbert space of analytical functions on a connected domain, we studied its α-invariant decomposition and related ergodic consequences. As an interesting consequence, we obtained the decomposition theorem for an ergodic α-mapping on the Bergman space of holomorphic functions.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":"48 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420232386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We analyzed the classical problem of decomposing the Hilbert space of holomorphic functions, especially their splitting into the product or sum of domain-separated components. For the Bergman space of analytical functions, we obtained a special decomposition satisfying the assigned growth degree properties. Concerning a general Hilbert space of analytical functions on a connected domain, we studied its α-invariant decomposition and related ergodic consequences. As an interesting consequence, we obtained the decomposition theorem for an ergodic α-mapping on the Bergman space of holomorphic functions.
复函数的Hilbert空间分解性质及其应用
分析了全纯函数Hilbert空间分解的经典问题,特别是全纯函数Hilbert空间分解为域分离分量的积或和的问题。对于解析函数的Bergman空间,我们得到了一个满足给定生长度性质的特殊分解。关于连通域上解析函数的一般Hilbert空间,研究了其α-不变分解及其遍历结果。作为一个有趣的结果,我们得到了全纯函数在Bergman空间上的遍历α-映射的分解定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信