Certain Interpolative Proximal Contractions, Best Proximity Point Theorems in Bipolar Metric Spaces with Applications

IF 3.6 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Fahad Jahangeer, Salha Alshaikey, Umar Ishtiaq, Tania A. Lazăr, Vasile L. Lazăr, Liliana Guran
{"title":"Certain Interpolative Proximal Contractions, Best Proximity Point Theorems in Bipolar Metric Spaces with Applications","authors":"Fahad Jahangeer, Salha Alshaikey, Umar Ishtiaq, Tania A. Lazăr, Vasile L. Lazăr, Liliana Guran","doi":"10.3390/fractalfract7100766","DOIUrl":null,"url":null,"abstract":"In this manuscript, we present several types of interpolative proximal contraction mappings including Reich–Rus–Ciric-type interpolative-type contractions and Kannan-type interpolative-type contractions in the setting of bipolar metric spaces. Further, taking into account the aforementioned mappings, we prove best proximity point results. These results are an extension and generalization of existing ones in the literature. Furthermore, we provide several nontrivial examples, an application to find the solution of an integral equation, and a nonlinear fractional differential equation to show the validity of the main results.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"80 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7100766","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this manuscript, we present several types of interpolative proximal contraction mappings including Reich–Rus–Ciric-type interpolative-type contractions and Kannan-type interpolative-type contractions in the setting of bipolar metric spaces. Further, taking into account the aforementioned mappings, we prove best proximity point results. These results are an extension and generalization of existing ones in the literature. Furthermore, we provide several nontrivial examples, an application to find the solution of an integral equation, and a nonlinear fractional differential equation to show the validity of the main results.
双极度量空间中的某些插值近端收缩,最佳接近点定理及其应用
在本文中,我们提出了几种类型的插值近端收缩映射,包括reich - rus - ciric型插值-型收缩和kannan型插值-型收缩。此外,考虑到上述映射,我们证明了最佳的接近点结果。这些结果是对已有文献结果的扩展和概括。此外,我们还提供了几个非平凡的例子,一个求积分方程解的应用,以及一个非线性分数阶微分方程来证明主要结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractal and Fractional
Fractal and Fractional MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.60
自引率
18.50%
发文量
632
审稿时长
11 weeks
期刊介绍: Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信